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ABSTRACT

This thesis is an investigation into the nature of data analysis

and computer software systems which support this activity.

The first chapter develops the notion of data analysis as an

experimental science which has two major components: data-

gathering and theory-building. The basic role of language in

determining the meaningfulness of theory is stressed, and the

informativeness of a language and data base pair is studied. The

static and dynamic aspects of data analysis are then considered

from this conceptual vantage point. The second chapter surveys the

available types of computer systems which may be useful for data

analysis. Particular attention is paid to the questions raised in the

first chapter about the language restrictions imposed by the computer

system and its dynamic properties.

The third chapter discusses the REL data analysis system,

which was designed to satisfy the needs of the data analyzer in an

operational relational data system. The major limitation on the

use of such systems is the amount of access to data stored on a

relatively slow secondary memory. This problem of the paging of

data is investigated and two classes of data structure representations

are found, each of which has desirable paging characteristics for

certain types of queries. One representation is used by most of the

generalized data base management systems in existence today, but

the other is clearly preferred in the data analysis environment,

as conceptualized in Chapter I.



-iv-

This data representation has strong implications for a

fundamental process of data analysis -- the quantification of

variables. Since quantification is one of the few means of sum-

marizing and abstracting, data analysis systems are under strong

pressure to facilitate the process. Two implementations of quanti-

fication are studied: one analagous to the form of the lower predi-

cate calculus and another more closely attuned to the data represen-

tation. A comparison of these indicates that the use of the "label

class" method results in orders of magnitude improvement over the

lower predicate calculus technique.
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Introduction

The development of data analysis has paralleled the rise of

empirical science itself. Modern science is founded upon the idea

that theory should be verified against the data obtainable from

reality. This inclusive view of the analysis of data has tended to

be submerged by the successful development of the theories of

probability and statistics, which have turned data analysis into a

relatively confined sub-branch of mathematics. The advent of the

electronic computer, however, with its great flexibility and liber-

ating power has caused the rediscovery of data analysis as a field

in its own right that has much wider goals and fewer restrictions

than either mathematical statistics or probability theory.

To get a feel for the rapid changes in attitude that have

occurred recently, listen to the pioneer John W. Tukey (1962, p. 1):

For a long time 7 have thought I was a statistician,
interested in inferences from the particular to the
general. But as I have watched mathematical statistics
evolve, I have had cause to wonder and to doubt. And
when I have pondered about why such techniques as the
spectrum analysis of time series have proved so useful,
it has become clear that their "dealing with fluctuations"
aspects are, in many circumstances, of lessor impor-
tance than the aspects that would already have been
required to deal effectively with the sirnp'er case of
very extensive data, where fluctuations would no
longer be a problem. All in all, I have come to feel
that my central. interest in is data analysis, which I
take to include, among other tErligs, procedures for
analyzing data, techniques for interpreting the
results of such procedures, ways of planning the
gathering of data to make its analysis easier, more
precise or more accurate, and all the machinery and
results of mathematical statistics which apply to
analyzing data.
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This statement, first presented in 1961, is still closely

bound to the traditional notions of statistics, as it is a descripticn

of what statisticians did as opposed to what they said they did. A

short time later Tukey recognized (1966, p. 695) the generality

and independence of data analysis and had progressed far beyond

the narrow confines of conventional statistics:

The basic general intent of data analysis is
simply stated: to seek through a body of data for
interesting relationships and information and to
exhibit the results in such a way as to make them
recognizable to the data analyzer and recordable
for posterity.
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CHAPTER I

THE ESSENCE OF DATA ANALYSIS

Data analysis is that coordination of continuing
observation and developing theory which prod-
uces information.

Data analysis is the activity of interrelationship between

ongoing theory and ongoing data: it is neither the theory-changing

nor data-gathering process. Modern trends in the philosophy of

science match this view that the existence of reality, and with it

the notion of truth, is irrelevant. Data analysis does not result

in true theories, only informing ones.

This use of "information" is non-standard. Both theory and

data are required to produce information. Theory without data is

so unsubstantiated as to be empty. Data without theory is mean-

ingless. In tying data to theory, data analysis gives the confirmation

of data to theory and the interpretation of theory to data, and

creates information.

Now a theory is linguistic in nature: a set of statements

in some language. One might prefer "conceptualization" instcad,

but this is illdefined and unmanageable. Theory is the tangible,

manipulable form of conceptualization, insight, understanding,

and explanation.

And what is data? Data is not linguistic, not sentences of

a language. Data is a structured body of facts, a tabular listing

of terms. Today data is epitomized by the computerized data bank.
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The distinctiJn between extension, the data structure, and

intension, the theory, is the first fundamental duality. Data analysis

is the bridge between them. It resembles the double helix, that

foundation of life as we know it. If one strand is the activity of

observation and the other is the unfolding process of conceptual-

ization, then data analysis bonds the two, holding them together

and conveying their recriprocal influences.

The Role cf Language

When one is faced with a body of data, one conceives his

task to be finding relationships which are substantiated by that

da,:a. One searches for those models, or sets of structural

relationships, which best reflect the data. Some would like to

think that the data analyzer has at his disposal all possible

structures or models - this is not the case.

"All possible models" is far too large a class and in fact

_s philosophically treacherous. In any particular case the

analyzer is limited, limits himself, to a much more detailed and

circumscribed set of models. These are the ones compared with

the data. Thus another aspect of the task is to determine the

modelspace, the set of models, to be considered.

Equivalently, since a theory is embedded in a language,

one must determine the language in which to express the theories

to be given attention. The division between language and theory,
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or modelspace and model, is the second fundamental distinction

of data analysis.

illustration can be formed from the relationships given

by a family tree. When a researcher knows that his data is about

family relationships he will use such terms as father, mother, and

grandparent, and will state such particular data as "John is the

father of Mary, " fully understanding the meaning of these terms.

These phrases, together with some knowledge of their meanings

and interrelationships, form a language which he uses to describe

certain worlds.

Tacit Knowledge. Which models are available in this

language? It is clear that using such terms one cannot describe

any model whatsoever. Since the words of the language include

tacit knowledge, we find that language delimits the set of models

we can consider and this very restriction adds knowledge which

would otherwise not exist. Thus if we assume, either apriori or

by explicit statement, that parent and child are related in the

normal fashion, then from the data "John is the father of Mary"

we can know that "Mary is John's child." This new understanding

is attainable only because we have eliminated many possibilities

and thus have some restrictions on the models involved. This

technique of gaining information by restricting the possibilities

considered is tremendously powerful and ubiquitous.
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The position of tacit knowledge is generally misunderstood.

Consider "John is the father of Sue." Even if the level of implicit

meaning that relates father to child is ignored, there remains a

basic understanding of the structure of the sentence itself: it

establishes that a relationship, namely father, exists between John

and Sue. It is only in terms of these understandings of language

and language structure that data is in any sense meaningful. Even

when the data is given in the form of tabulations, without some

prior understanding of how the forms of these tabulations are to be

interpreted, of the significance of the symbols used, and so on,

the data would be complete nonsense.

Let us examine in greater detail the implicit knowledge

tacit in language itself. One's ontology - what types of things one

believes can exist - determines to a large extent what things one

looks for, pokes and examines, or considers errors in measurement

rather than data. To see that these metaphysical assumptions

affect our perceived reality reconsider family relationships. We

know that a father is male and a mother female, and every person

has one of each. Yet in certain primitive cultures a person might

have two female parents, one the mother and the other the father.

Further, in our own society, artificial inovulation makes it

possible for a person to have two "real" parents and a third woman

for a mother.
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It can be argued that the above is merely a change in the

meaning of the words. This is a change of language (in the broad

sense of language) and as such is a very definite change in the

assumptions and knowledge we bring to a situation. The informa-

tiveness of data is affected rather directly by this kind of change.

The linguist Benjamin Whorf expresses (1956, p. 212) the

role of language quite forcefully:

When linguists became able to examine critically
and scientifically a large number of languages of
widely different patterns, their base .of reference was
expanded; they experienced an interruption of phenom-
ena hitherto held universal, and a whole new order
of significances came into their ken. It was found
that the background linguistic system (in other words,
the grammar) of each language is not merely a
reproducing instrument for voicing ideas but rather
is itself the shaper of ideas, the program and guide
for the individual's mental stock in trade. Formu-
lation of ideas is not an independent process, strictly
rational in the old sense, but is part of a particular
grammar, and differs, from slightly to greatly,
between different grammars. We dissect nature
along lines laid down by our native languages. The
categories and types that we isolate from the world
of phenomena we do not find there because they
stare every observer in the face; on the contrary,
the world is present,Jd in a kaleidoscopic flux of
impressions which Lias to be organized by our minds-
and this means largely by the linguistic systems in
our minds. We cut nature up, organize it into
concepts, and ascribe significances as we do,
largely because we are parties to an agreement to
organize it in this way - an agreement that holds
throughout our speech community and is codified
in the patterns of our language.

The language as a whole encapsulates tacit knowledge.

Statements in the language, "theory," extend this in an explicit

way. While even the level of meaning assumed in the language
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may go beyond or be inconsistent with the data, presumably we

start with a language which does not do this. But the theories

which extend the tacit meaning may well.

One can think of the sentences that make up a theory as

specifications of certain aspects of the world. As such, each

statement further restricts the class of possible models. In

general, one would hope to have a theory which so restricts the

possibilities that there would be one and oniy one left - this, then,

would be the "true" theory of reality. Unfortunately, no data is

complete enough to confirm such a theory, thus theory must be

weaker.

Data as Theory. There is at core a language in terms of

which the data is stated. But the languages we use to deal with

data are far richer than that minimally necessary for the statement

of the data itself. We can describe further, more complex relation-

ships that may or may not exist in the data. We can account for

processes that reduce the data into other forms. Moreover, the

language could have potentially stated items of data incompatible

with those that may have been given, or which may extend or modify

the original data. -

Any set of statements in a language is a theory. The data

translated into statements form a theory, but a terribly weak one.

Dr. Richard Feynman, Nobel Laureate in physics, puts the matter

(1965, p. 76) this way:
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How is it possible that we can extend our laws
into regions we are not sure about? Why are we so confident
that, because we have checked the energy conservation
here, when we get a new phenomenon we can say it
has to satisfy the law of conservation of energy? Every
once in a while you read in the paper that physicists
have discovered that one of their favorite laws is wrong.
Is it then a mistake to say that a law is true in a
region where you have not yet looked? If you will
never say that a law is true in a region where you have
not already looked, you do not know anything. If the
only laws that you find are those which you have just
finished observing then you can never make predictions.
Yet the only utility of science is to go on and try to
make guesses. So what we always do is to stick our
necks out, and in the case of energy the most likely
thing is that it is conserved in other places.

It is evident that data as theory is too weak. However, theory

that goes far beyond data is too unsubstantiated. The "proper"

theory is in an intermediate position between the two. We seek a

theory that provides the greatest insight adequately confirmed

by the data.

Data as Subrnodel. Another view, complementary to the

above notion, is that we seek that model or set of structural

relationships which best reflects the data and its interconnections.

We begin with some assemblage of models, the modelspace, from

which we can choose a model on the basis of our data. The

modelspace cannot be the set of all models: the limitations are

identical to those imposed by the tacit knowledge underlying a

language. For example, scientists doing regression

analysis have confined themselves to linear models of their data

Thus the modelspace limits our alternatives in exactly the same

way and for the same purpose as does a language.
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Since the data specifies structural interrelationships one

can view it as a submodel. As we have seen, the data-submodel

does not form a complete model in itself, but only a partially

specified configuration of the universe. The modelspace, then,

consists of models which extend that partial specification--models

which contain the data as a submodel. These are the models which

are compatible with the data. .

The relationship between a language and a modelspace is

quite close: one can derive the modelspace from the language,

though not quite the reverse. Consider the models of set theory as

"all possible models", at least from a meta-level vantage point.

We can say that two of these models are equivalent, to us, if no

sentence in a given language can distinguish between them. Thus,

no sentence of our language is true in one model and false on the

other, or vice versa. In this case the language simply cannot

express those features that differentiate the two models. As an

example, suppose our language talked about flipping coins. We

can express 'whether a coin lands with either heads or tails

showing. What we cannot express or distinguish is the difference

between landing heads up on the table or landing heads up on the

floor or landing heads up after spinning exactly 101 times. All of

these events are identical to our simple heads/tails language.

Therefore, a language clusters models together. The

language can be used to distinguish any two models from different



clusters, and cannot be so used on models within the same cluster.

Formally, the language has partitioned the models into a set of

elementary equivalence classes. These clusters, or equivalence

classes, form the modelspace we see when using that language.

This modelspace represents exactly the possible states of

the universe--as seen by a particular language or conceptualization.

It mirrors the implicit understandings, knowledge, and structural

relationships which are tacit in that language.

A language corresponds to a modelspace. A theory, or set

of statements, within that language will select one or more of the

equivalence classes as being the set of models compatible with that

theory. We can correspond theories and models in this way, with

a "complete" theory selecting only one equivalence class, or one

model in the modelspace.

We will label the language/theory approach as intensional

and the modelspace/model approach as extensional. While the two

are complementary, their differences are meaningful and will be

discussed further in the section below on computer system techniques.

The fabric of data analysis, then, can be torn in two ways

by the fundamental distinctions expressed in the diagram below:

language +-.....4 theory

1modelspace -- --, model
(data as submodel)

(structure) (content )

Fig. 1. --The Two Dimensions of Data Analysis

(intension)

(extension)
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Just as the first distinction can be considered intension vs.

extension, the second can be thought of as structure vs. content.

The difficulty is that there is no adequate definition of structure.

As used here it means the commonalities found in a-set of models,

or the organization abstracted from some particular set of data. It

is in this sense that we utilize a set of models, for the language/

modelspace gives us a means to manipulate structure. Marshall

McLuhan pursues a somewhat similar idea in distinguishing media

from message.

The importance of structure is now being realized. If the

milestones of computing history were to be enumerated, most

computer scientists would agree on (1) the notion of a stored-

program machine and (2) the notion of list-processing techniques.

Information scientists, however, would subsume list-processing

under the idea of structure processing in general, for we are

becoming aware that the limitations of our programs are set by

the structures we utilize much more than by any other factor.

Furthermore, by designing programs to handle some particular

structure rather than a very specific set of data, we acquire more

widely applicable programs. One can in fact go to the extreme

(but logically correct) position that all our computers do is convert

from one structure to another and therefore should be called

structure-processing machines rather than data processing machines.
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We impose structure on our universe. But the structure of

our observations is too weak to be of any use; enormous structure

far beyond our data has too low a confirmation. We need theories

and models which are in between.

What we do is build theories which are informing: which

are compatible with our data and which go beyond the data in

delimiting alternatives. This notion that our theories are not

totally implied by our data disturbs people, for it insists that

"totally objective science" does not exist. It means that in all

human endeavors we impose our own subjective views on our

perceptions and that if we wish to be informed we must be artists.

But artists and scientists combined, for there are the two aspects

to information: the side which compares theory to data in order

to maintain compatibility, and the side which adds subjective

structure in order to delimit the alternatives to be considered.

This imposition of cognitive structure on observation means

that one can no longer believe in the primitive scientific ideal: one

merely looks at nature (in this case some data) and all will be

revealed, for all scientific laws are inherent in the data waiting

for us to elicit them. This naive view has been supplanted by one

in which scientific laws are the product of our perceptions and of

our own thinking process, and are informing at the moment.
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Information, Language, and Data

The notion of information has been woven throughout the

preceding discussion; with it has been the assumption that informa-

tion is a function of both language and observation. While the

formalization is beyond the scope of this work, it is possible to

outline some characteristics of this function.

The word information reminds us immediately of the exis-

tence of information theory, as communication theory has come to

be known. This branch of probability theory, founded in 1948 by

C. E. Shannon, is concerned with the likelihood of the transmission

of messages when they are subject to certain probabilities of trans-

mission failure, distortion, and accidental additions called noise.

The notion of information quickly appeared as workers in the field

tried to, express what it is that is communicated, and was just as

quickly given a mathematical definition which fits the context of

communication theory.

The technical definition of information in communication

theory is an attempt to measure the worth or value of receiving

any particular message from some fixed set of messages (Pierce

1961, p. 23):

In communication theory we consider a message
source, such as a writer or a speaker, which may
produce on a given occasion any one of many possible
messages. The amount of information conveyed by
the message increases as the amount of uncertainty
as to what message actually will be produced becomes
greater. A message which is one out of ten possible
messages conveys a smaller amount of information
than a message which is one out of a million possible
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messages. The entropy of communication theory is a
measure of this uncertainty and the uncertainty, or
entropy, is taken as the measure of the amount of
information conveyed by a message from a source.
The more we know about what message the source
will produce, the less uncertainty, the less the
entropy, and the less the information.

This tremendously successful conception of information has

one important point: the amount of information depends heavily

upon the characteristics of the set of alternatives from which the

message is drawn. In fact, the amount of information conveyed

by a message is defined as the difference before and after its

receipt of our uncertainty about the message space. Thus the

central concept of information is the space of alternatives and its

probability distribution.

What is the alternative space in a given situation? Commu-

nication theory was first applied to telegraphy, whose space was

obviously the alphabet, numerals, and a few punctuation characters.

These few characters were encoded into dots and dashes for

transmission, and one could determine the amount of information

a particular sequence of dots and dashes represented.

One must be careful however. Morse originally devised a

coding of words from a dictionary into dots and dashes -.a radically

different space of alternatives. One can receive a sequence of

signals and compute many different amounts of information

represented by that sequence, one for each alternative space or

even one for each probability distribution on the same alternative
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space. Communication theory limits itself to a known and fixed

alternative space and probability distribution.

What has all this to do with data analysis? First, one can

certainly think of data as a message, perhaps received from Nature

over a noisy channel. One would obviously like to know how much

information that data contained. If we had an alternative space

the whole of communication theory would be applicable, and

presumably we could compute the information.

The problem, of course, is the space of alternatives. Here,

as should be guessed by now, is the function of language. A language

determines a modelspace, as shown previously, which is exactly

the set of alternatives needed.

Therefore, a language and a set of data together determine

the amount of information. Given a body of data, one can search

for that language which maximizes the information associated with

that data. Given a fixed language, one can search for that data

which is most informing within that conceptualization. We maximize

our information by adjusting both language and data as necessary.

The case of a single, fixed language is exactly that covered

by communication theory. More interesting is the extension of the

notion of information into the realm of many languages, conceptual-

izations, alternative spaces. We will refer to a conjecture con-

cerning this area, enunciated by F. B. Thompson, as the

Fundamental Theorem.
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Consider the case of a fixed set of data and a linear chain of

languages. The languages forma '"proper" chain, that is, any

language in the chain is a proper ramification of the languages to

its left. More formally, we can induce a partial ordering on the set

of all formal languages by this definition: if LI and L2 are formal

languages, then L1 s L2 if the modelspace associated with L
2

is a

refinement of the modelspace associated with L1. That is, some

model possible in LI has been ramified into several distinguishable

models in L2.

Two properties of such chains of languages are worth noting:

every proper chain has a right-hand end, and none have a left -hand

end. The right-hand end language is one which creates a model-

space with only one model - it cannot distinguish between any

states of the universe. Such a language might consist, for example,

of the one word "wow. " The fact that there is-no most powerful

language is essentially Tarski's theorem on truth: for any formal

language L1, there is a more powerful language L2 which can express

things not expressible in L1.

Thus, if we make our chain of languages .the horizontal axis

of a graph, and a measure of the amount of information given by a

fixed set of data the vertical axis, we should at least be able to

see the shape of the curve even if we cannot give explicit formulae

for its computation. There is one point worth noting on the language

axis. We yvill assume that there is a least powerful language in



-18-

which all aspects of the given body of data can be expressed, and

mark that Lek.

We know that the information provided by our one-word

language is zero, since no data affects what we can do with it. As

for the rest of the curve, the standard expectation assumed in the

literature is that information increases until L , at which point

everything knowable is known, and is thereafter constant since one

does not lose information already gained by being able to express

more. This curve is depicted below.

I

L.* L

Fig. 2. --"Objective reality" information curve

This view encourages the use of low-level languages and

conceptualizations - at least as ramified as L . More importantly,

it says one can go much lower without loss of information; thus

biologists and psychologists should be thinking in the same terms

as atomic physicists, for example. This view of the information

curve supports a reductionist philosophy.

The Fundamental Theorem has two parts:

1) if one considers more and more powerful languages,

in the limit the information obtained is zero;
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2) there are languages to the left of L4, i. e. abstractions

from L*, which maximize the information across the

chain of languages.

L L

F;g 3. --The information curve of the Fundamental TI-Leorem

While this theorem has not yet been formally proved, there

are good reb,.ions for expecting it to be true. For more details,

see Thompson (1969) and Randall (1970).

The Fundamental Theorem implies that we are most informed

when working at a fairly hir-'i level_ of conceptualization - more

abstract than the level of the raw data, and certainly not at some

extremely ramified common, basic language. At the same time

one cannot get too far above the data.

One must search for an informative conceptual view. But

all languages are informative to some degree. The importance

of the Fundamental Theorem is that it tells us to search for the most

informative conceptual view, that in fact one exists. This view,

furthermore, is not at the level of our sensory impressions or some

other "objective" level. It is a view in which we have gone beyond

the data, made inferences, and imposed our own will.
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What is data analysis? On one scle is the activity of finding

an informative language and theory within that language. On the

other is the continuing activity of perceiving and data gathering.

Both of these processes affect the other enormously, and data

analysis is the bridge that intervenes. Data analysis should tell

us when to move to a more informing theory, and when to gain

information by changing the data we work with to bring it closer to

current language and theory.

Data analysis is that connection between advancing cognitive

structuring, on the one hand, and continuing perception, on the

other, which produces information.

Statics of Datz. Analysis

If information is a function of language, one might well

ponder the use of theory. Theories are necessary for the process

of confirmation: one can compare data to a theory, not to a

language. Theory is our bridge between data and conceptual view.

Given a language and a body of data how does one choose

which theory within the language will be used as representative and

compared to the data? We would like to choose the best one, the

theory which. fits the data most closely, out of the possibilities

provided by our language. In most languages, however, there is

hardly a notion of fit, and no apriori meaning for "best fit."
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Mathematical Statistics. Fortunately, for a very few simple

languages we can define "fit" and elicit the best-fitting theory.

Mathematical statistics is that subject which describes these

languages, a notion of fit, and procedures for finding the best

theory in the language. The languages involved are all numeric,

and in general are the ones which are mathematically tractable.

For example, one of the most frequently used languages

talks about lines: linear functions of one real variable. All

sentences in the language are of the form "Y = < number
1

> +

< number2> * X"; any such sentence can be considered a theory.

Thc associated mocielspace is the set of all non-vertical lines

in a coordinate plane--every line corresponds to a sentence and

every sentence specifies a line.

For this language and a set of data (pairs of numbers < x., y.>)

one can define the best-fitting theory. it is that theory whose

values of <nun- e r 1> and <number
2
> are such as to minimize the

function E(a, b) = + bxi -Yi)2

This definition is then used to find the best-fitting theory

the coefficients which minimize the error function. Obviously,

this pro .::dure is curve-fitting with a least-squares criterion,

and in this case finds the regression line.

The point here is that most of descriptive statistics can be

rephrased into the following form: "if the data is of type such-and-

such, and we consider only a particular language, then (1) a good
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notion of fit is , and (2) using this notion, the best-fitting

theory can be found by

Thus mathematical statistics is an iz "rtant part of data

analysis and is limited only by the languages and modelspaces it

considers.

The Uses of Fitting. Suppose we step back a little and

consider what people think they do. We find two rather distinct

groups. The first, consisting mainly of statisticians, advocates

the use of models to analyze data. The second group, the simulation

users, champion the use of data to analyze models. Are these

opposing philosophies?

The people who use models to analyze data talk in terms of

"fit": how well does the model fit the data? The viewpoint here

is that it is the data which is important; they desire techniques and

tools that summarize the data and display the interesting relation-

ships in the data. Models, from this point of view, are simply

structures that guide data analysis. They are assisting tools,

and one should never completely believe in thecn. Tukey (and

Wilk 1966, p. 796) puts the matter this way: Data analysis "can

only bing to our attention a combination of the content of the data

with the knowledge and insight about its background which we must

supply. Accordingly, validity and objectivity in data analysis

is a dangerous myth. "
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The main tools of this group are fit and exposure. They fit

a model to ';he data, then consider the residuals - those places

and instances of lack of fit. Again according to Tukey (1966):

The iterative and interactive interplay of summarizing
by fit and exposing by residuals is vital to effective
data analysis. Summarizing and exposing are comple-
mentary and pervasive. . . . The single most important
process of data analysis is fitting. It is helpful in
summarizing, exposing, and communicating. Each fit
(1) gives a summary description, (2) provides a
basis for exposure based on the residuals, and
(3) may have the parsimony needed for effective
communication.

In this type of data analysis, while the focus is on the data,

we use models ancl theories as tools to get at the relationships that

hold between the various elements in the data. Thus our eyes are

on the data and our hands can be manipulating theory.

The other school says that one uses data to analyze models.

In this case, people generally have some theory and wish to verify

the correctness of that theory against some "real world" data.

This is the problem of verification of theory to increase the

credibility of theoretical construction.

The view that science proves theories to be true by verifying

them has passed its day. The question has instead become "how

much should one believe in a given theory?" This is one of the

main concerns of the people who design and experiment with simu-

lations:

A simulation or game is the partial represen-
tation of some independent system. Usually we
are interested in simulation as a means for increasing
our understanding of the system it is intended to copy.
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Therefore, the representativeness of a simulation
or game becomes extremely important in assessing
its value. The process of determining how well
one system replicates properties of some other
system is called validation. In experimental
research, validity is the goodness of fit or the
correspondence between phenomena produced by
two sets of properties. (Hermann 1967, p. 216)

To gain confidence in his simulations, the
social scientist may check them against scholarly
work in general. Further, he should compare his
constructions with "realities" - empirical descriptions
of the world of nation-states and international or-
ganizations . . . However, a simulated construction
is but theory. It provides no shortcut or magical route
to the "proof" of she validity of the verbal and
mathematical components it contains. Thus, there
is a need for a systematic examination of the extent
of the congruences between empirical analyses of
world processes and simulations of international
relations. (Guetzkow 1968, p. 202)

While these two viewpoints seem to be in opposition, it

should be clear that both are sub-processes of what we call data

analysis. They are both involved in the relationship of data to

model, data to theory. The difference is that one side

emphasizes data as being more important, the other side emphasizes

the model. This unbalanced attention determines and is determined

by the researcher's relative reluctance to change one or the other.

If one looks closely enough, of course, one can see the two

schools overlap: Tukey, primarily a data man, says, (1966, p. 698):

"Even when used for confirmation alone, data analysis is a process

of first summarizing according to the hypothesized model and then

exposing what remains, in a cogent way, as a basis for judging

the adequacy of this model or the precision of this summary, or

both."
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Clearly data analysis encompasses both viewpoints and

more: it is the dynamic balancing of the activities of perception

and cognition.

Dynamics of Data Analysis

One of the criticisms of statistical decision theory is that

the set of alternatives open to a decision maker is assumed to be

fixed. The importance of this static nature is only now being

recognized:

Much of the impetus for the computerization
of managerial decision making came from operations
researchers who saw the power of certain optimizing
techniques and recognized that most managers could
not hope to find the best answers to their problems
without the assistance of certain sophisticated
mathematics. . . .

However, an answer can be "optimal" only
if the range of choices considered by the manager
is restricted. Let me illustrate: A manager who
is being "eaten alive" by carrying costs on his
inventory might be told by a bright young operations
researcher (or a computer printout) that he should
order items into his inventory in optimal lot sizes.
There is a nice little square root formula that tells
him how to determine the optimum. Suppose a
lot size of 162 is the optimal answer to the math-
ematicians question, "What is the optimal lot size?"
This may solve one facet of the problem, but it is not
necessarily the best answer to the manager's question,
"What should I do about my high inventory carrying
costs?"

The best answer for him might be: (a) hold
a fire sale; (b) put a new roof on the warehouse to
stop parts from rusting; (c) hire new design engineers who
can standardize the parts; (d) fire the accountant
who treats this account as a place to dump other costs;
(e) change the reorder points; or (f) instruct the
inventory clerk on corporate goals! (Jones 1970,
p. 76)
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Enlarging the space of alternatives is one of the means we

have for changing a situation in order to gain information. The

possibilities for change form the dynamics of data analysis and

have too long been ignored.

There are three types of change which can be considered

from our conceptual vantage point: (1) one can change his data;

(2) one can change theories within the basic framework of some

fixed language; or (3) one can change languages.

That one might change his data seems improper and is often

referred to as unscientific. Historians of science, especially

Kuhn (1970, p. 135), have investigated scientists at work and have

actually found enormous amounts of selected purging of old data,

usually in times of revolutionary science. Further, the gathering

of new data is always under the guidance of the current conceptual-

ization, including when and how. In statistical analysis there are

special techniques which justify the elimination of unwanted data

by labeling it error or "outlier. "

The dynamics of the situation are such that at times the

current conceptualization is more valuable or more believed than

data which raises questions about it, and so that data is ignored

or dropped. This may be used to increase the information associated

with that conceptualization/data pair.

Change of theory is a relatively well-understood phenomena;

statistical decision theory is applicable, for example. We wish to

choose that theory from among the possibilities created by our
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language which is best confirmed by our data, which fits best, or

which has the best expected payoff. There ma's be technical difficul-

ties in finding such theories, but for a wide variety of theories the

techniques of curve fitting, the calculus of variations, or dynamic

programming are effective. The problems intensify, of course, as

the theories involved become more complex.

The conceptual problem, and our lack of understanding, of

language change is greater. We can identify severvl instances of the

general notion of language change.

If some part of a theory becomes very highly confirmed, it

is usually more informative to shift the explicit structure of this

subtheory to implicit structure within a language. That way one

assumes something that was once questioned and considered. An

example is the belief that physical laws can be stated mathemati-

cally. This notion was once as controversial in physics as it is

today in the social sciences.

Other types of language change can have even greater

effects. There is change which admits the existence of new

conceptual entities. The existence of forces-which-work-at-a-

distance was a revolution in physics, as was the emergence of

aristocrats in social philosophy.

There is also language change which adds new alternatives,

exactly as in the above example of the manager making decisions.

This kind of language change ramifies structure - creating several
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alternatives where before there was only one. Abstraction has the

opposite effect; it consolidates many alternatives into one by

ignoring differences. The concept of "people" ignores many

individual differences in favor of certain commonalities. The

concept of sex subdivides the class of people by emphasizing certain

differences while excluding others. The dynamics of conceptuali-

zation is often a pattern of alternation between abstraction and

ramification.

Note that change of language implies theory change as well.

A theory, as a set of sentences within some language, is interpreted

only with reference to rules contained within that language. Even

if the explicit statement of a theory does not change, its meaning

can.

Think of the theory of physics, part of which is contained in

the statement, "all of the properties of the world can be accounted

for as interactions between atoms." Whenatoms were defined as

indivisible, basic particles, physicists conducted certain experi-

ments to determine their characteristics, for example the impli-

cation that chemical reactions occur with small-integer weight

relations.

Now, however, when an atom is a collection of further

particles and forces, the operational meaning of the above state-

ment is quite different. "Atom, smashers" were self-contradictory

in pre - subatomic days.
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Language change is more difficult than theory change since

it entails the latter. It therefore occurs less frequently and with

greater effort and attendant confusion. This more basic kind of

change affects the unspoken assumptions of a field so that commun-

ication may be disrupted. In data analysis this relative difficulty

also holds. A social scientist doing correlations and regressions

is working within the language of linear models. To switch to

general polynomial models requires major adjustments in

technique, interpretation, and theory.

The importance of language change in the dynamic aspects

has already been recognized. Thomas Kuhn, in his work on the

nature of scientific progress (1970), distinguishes normal science

from revolutionary science. We can identify normal science as

theory change and revolutionary science as language change.

Kuhn's thesis is that normal science means working within

a "paradiOn", while revolutionary science changes paradigms.

Kuhn's paradigm is our notion of language. Paradigms are works

which (p. 10) "served for a time implicitly to define the legitimate

problems and methods of a research field for succeeding generations

of practitioners. They were able to do so because they shared two

essential characteristics. Their achievement was sufficiently

unprecedented to attract an enduring group of adherents away from

competing modes of scientific activity. Simultaneously, it was

sufficiently open-ended to leave all sorts of problems for the
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redefined group of practitioners to resolve." Although Kuhn is

concerned with major upheavals, his notion is close to our concep-

tioa of language, within which there are many theories.

On revolutionary science, or important language change,

Kuhn (p. 84) writes:

The transition from a paradigm in crisis to a
new one from which a new tradition of normal science
can emerge is far from a cumulative process, one
achieved by an articulation or extension of the old
paradigm. Rather it is a reconstruction of the field
from new fundamentals, a reconstruction that
changes some of the field's most elementar'cr
theoretical generalizations as well as many of its
paradigm methods and applications.

Conceptual Frictions. A discussion of dynamics would not

be complete without some thought given to the frictions which are

inhibiting conceptual change. The following is superficial, yet

does represent a beginning on thir. complex subject.

We can classify the inertias into three broad categories:

informational, psychological, and technical. Psychological

resistance to change is the best documented and studied. In this

domain, anxiety is a major cause for mental rigidity. An anxious

person seems to lose the ability to move in the abstraction/ramifi-

cation dimension, to a degree dependent on the level of anxiety.

Psychologists are investigating this aspect of anxiety now.

Another psychological friction is reluctance to change solely

because of the previous level of investment. The investment could

be in terms of money, time, mental effort, or any such scarce

resource. When one has a lot invested in some conceptual view,
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one tries to retain that view if at all possible. These views are

usually abandoned much later than they should have been, only

when their use is a total catastrophe. This effect is visible today

especially in societies, government structure, and computer systems.

Under technological frictions are classified all inertias

imposed on us by our use of current technology. There will always

be technological friction, since one's technology forms a part of

one's reality. Some forms of technology are less limiting than

others, though. The electronic computer has the potential to

enormously facilitate our conceptual movement. The present usage

of computers, however, does not. Chapter II of this dissertation

provides the details on the current computer practice in

analysis systems.

Informational frictions are those related to the nature of

information and the conceptualization process. First, suppose that

we attempt to find the most informing conceptual view. That is,

given some starting view, we move in the direction of increasing

information: information hill-climbing. But there a trap

here: we may find a language which provides a local maximum,

in terms of information. All of its neighboring languages have

less information, even though some other languages provide more.

One would be reluctant to change conceptual views if it meant a

loss of information immediately and a possible gain later.

The second type of information friction is related to tho

need for communication. Communication between two individuals
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can only take place if they share some conceptualization. Remember

that we equate conceptualization to language: the individuals

communicating must be talking the same language. What happens

if one person changes his language? Either the amount of commun-

ication drops, to that part of the language still held in common, or

the other person must adjust his conceptualization to match. The

painfulness of this process is evident, and one can cite many

examples of its effects. A simple one is the frar.1.5c effort to

standardize programming languages such as FORTRAN, COBOL,

or BASIC.

These inertial forces in the dynamics of conceptual change

constitute an interesting and important area of research for the

behavioral sciences. A much deeper understanding of them is

essential to a thorough treatment of data analysis.
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CHAPTER II

THE CURRENT STATE OF DATA ANALYSIS SYSTEMS

A data analysis computer system is certainly a repository

for data, but it is also something more: a medium for the articu-

lation of conceptualizations. Since data analysis is the interaction

between cognition and perception, the primary goal of these compu-

ter systems is to encourage and provide support for this interaction.

Data analysis systems must aid both sides: the ongoing

processes of data collection and theory building. Furthermore,

these two processes must be in harmony--neither can be neglected

or overshadowed.

There is an important point to be made about computer aids

for conceptual developments. Computer systems are always a

resistance to conceptual movement. They are, after all, only

recursive mechanisms. Beyond this, however, various types of

systems have their own rigidities. These restrictions exist be-

cause of the incorporation of meta-level conceptualizations (the

system designer's) and current technological limitations. Any

particular system represents a balance between the conceptual and

technological efficiencies obtainable by imposing limitations and

the inhibition of conceptual freedom that such limitations require.

The basic questions to be asked about current systems

include: (1) what range of user conceptualizations does the system

allow; (2) how does the system facilitate the user's movement

through that conceptualization spate; (3) in what ways does the
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system aid the process of data adjustment; and (4) does the system

balance data and theory?

Today there are five identifiable system types being used

for data analysis:

1. data management

2. statistical analysis

3. question-answering

4. reference retrieval

5. simulation

Data Management Systems

These are the systems designated by some combination of

the terms data, information, file, retrieval, management, and

generalized. There are currently around 200 distinct systems in

existence; the system type is being studied intensively by a

CODASYL committee (1969).

Data management systems are an evolved form of the 3 x 5

card file. This extremely useful device is typified by the card

catalogue in a library. The catalogue consists basically of a file

of cards, one for each book in the library. Each card contains all

the data pertaining to one book, such as its title, call number, author,

etc. There are also auxiliary files, containing such things as

cross-references which facilitate certain types of searches.

In current data management systems a data base consists of

a set of files, each a sequence of records. All records in a file have
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a similar, fixed format and all contain data about a single type of

entity. Each record contains essentially all of the data about an

entity, and ideally there is only one record per entity. Finally,

some of the newer systems have added auxiliary files of indexes,

using the notion of the "inverted file, " in order to facilitate certain

kinds of searches.

Using these data management systems, one could, theoreti-

cally, display the record of a single, particular entity. Instead,

one usually produces a "report, " a display of a specified portion

of the record for all those records satisfying some selection

criteria. An example of such a report, and of these systems, is

shown below in Figure 4. An understanding of the nature of data

management systems requires a look at the restrictions placed

on the selection criterion. The decision of whether to include record

X must be made on the basis of data contained only in record X.

That is, the selection criterion is a recursive function of data in

the given record exclusively.

This limitation enforces a worldview that each entity, i. e.

record, is basically independent of every other entity. What sorts

of user conceptualizations are allowed in this environment? The

only theories permitted are those that state that some entities

really are related and are interesting: all those which pass some

stated selection process. Thus the space of theories is generated

by the set of allowable selection functions, which are limited as

described above.
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The data management systems facilitate the user's movement

through this conceptual space both by providing such a simplified

space and by making it relatively easy to describe the selection

function desired. The tremendous proliferation of such systems

provides proof of the effectiveness of their conceptualization and

implementation technique.

The limits of their applicability are equally clear. These

systems assume a basically static language, that is in this case a

basic set of data attributes. Modification of data in existing records

is tolerated, as is the addition of new records within an existing

file. Barely tolerated, since, as a typical example of the common

use of such systems, a change-of-address on a magazine subscrip-

tion will take six to ten weeks.

As for more fundamental changes, the addition or deletion

of an attribute across an entire file for instance, these require

major upheavals in conceptualization as well as considerable time

and effort. Data management systems are counterproductive in

a dynamic or highly interrelated world.
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Fig. 4. --An example of data management systems

Suppose that one wanted to create a file with a
record for each member of the computing center staff,
giving his name, date of employment, and principal
programming language. Suppose that one also wanted
.a list of all the PL/I programmers on the staff. The
following ASAP program would accomplish this
(Conway, Maxwell, and Morgan 1971, p. 13):

)) ASAP START RUN: NEW, DEFINE
)) ASAP 'PASSWORD'
)) DEFINE RECORD: STAFF
)) NAME 30 KEY
)) DATE OF EMPLOYMENT 8
)) PRINCIPAL LANGUAGE 20
)) DEFINE INPUT: STAFF CARD
)) COLUMNS 2-31 = NAME
)) COLUMN 1 = NEW RECORD
)) COL 32-39 = DATE OF EMPLOYMENT
)) COLUMNS 40-59 =-PRINCIPAL LANGUAGE
)) DEFINE END
))
)) FOR ALL STAFF SELECTED BY KEY
)) IN INITIAL DATA, FORMATTED BY STAFF CARD,
)) UPDATE-1),ECORD.
))
)) DATA BEGIN INITIAL DATA
*JONES, WILLIAM 11/23/68FORTRAN
*WILSON, MALCOLM 01/20/69COBOL
*STEWART, PAUL 07/01/65FORTRAN
*HOPKINS, PAULA 10/15/68PL/I
*ABELSON, PETER 02/01/66ASSEMBLER
*CHAMBERLAIN, H. G. 03/01/64PL/I
)) DATA END INITIAL DATA

)) FOR ALL STAFF WITH
)) PRINCIPAL LANGUAGE = 'PL/I',
)) PRINT A LIST OF NAME, PRINCIPAL LANGUAGE.
)) ASAP END, ASAP END RUN
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Statistical Analysis Systems

These systems have been designed to support the mathemati-

cal statistics view of data analysis. These packages usually include

a primitive data management system with a simple, rigid data

structure, and place emphasis on the processes available for

analysis and summary. Some of the current systems are OSIRIS

(Inter-university Consortium for Political Research), SPSS

(University of Chicago), PSTAT (Princeton University), and BMD

(UCLA).

The statistical analysis systems make the assumption that

their data is a random sample from some much larger (i. e. infinite)

population. In this conceptualization only the broad, statistical

view is relevant and analysis of individuals is meaningless. Thus

these systems have a data structure which can be described as

rectangular: a fixed set of entities, a fixed set of attributes (either

numerical or character-valued), and each entity is characterized

by all attributes. There is no cross-linking of entities.

In fact, in a random sample one does not expect the indivi-

duals to be interconnected, and most statistical processes assume

independence of individuals. Having related entities implies that

the sampling technique was faulty.

Thus the world view presented is one of having a small

amount of data taken from a large population. One wishes to

discover broad, generalized characteristics of the total population.
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In order to do this, the statistical systems provide a set of

primary tools. Each tool is a process which imposes some

particular conceptualization on the data and summarizes the data

accordingly. These basic theoretical views are the usual ones

found in mathematical statistics, simple random variables with

known probability distributions, for example.

In these systems a user can also express his theoretical

view by transformations of the data or by some recursive selection

process. Thus a user's conceptual space consists of some fixed

set of basic views applicable to recursive transformations of the

data. The overriding limitation is that the data must be considered

a random sample collected from a large total population.

Fig. 5. --An example of statistical analysis systems (Nie, et al.
1970, p. 54)

RUN NAME
FILE NAME
VARIABLE LIST
INPUT MEDIUM
# OF CASES
INPUT FORMAT
MISSING VALUES

VAR LABELS

VALUE LABELS

SAMPLE RUN OF THE SPSS SYSTEM
EXAMPLE2, THIS IS THE FILE LABEL
AGE, SEX, RACE, INCOME, EDUCAT N
CARD
10
FREEFIELD
AGE TO RACE (0, 8, 9)/INCOME(7)/
EDUCATN(0)
AGE, AGE OF THE RESPONDENT/SEX, SEX
OF THE RESPONDENT/INCOME, YEARLY
FAMILY INCOME IN DOLLARS/EDUCATN,
EDUCATN OF HEAD OF HOUSEHOLD
SEX(1)MALE(2)FEMALE(3)NOT ASCER-
TAINED/RACE(1)WHITE(2)NEGRO( 3)
ORIENTAL(4)OTHER(9)NOT ASCERTAINED/
EDUCATN(1)NONE(2)PRIMARY OR LESS( 3)
SOME SECONDARY(4)SECONDARY GRADU-
ATE(5)SOME COLLEGE(6)COLLEGE
GRADUATE(7)GRAD SCHOOL(8)OTHER(9)
DON'T KNOW(o)NOT ASCERTAINED
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OPTIONS
STATISTICS

READ INPUT DATA
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AGE TO EDUCATN (o)
RACE BY INCOME BY EDUCATN/INCOME
BY RACE BY SEX
1, 3
1,4, 6

74 1 2 8999 7 64 2 1 7463 4 24 3 1 5000 6

41 3 1 4756 2 87 1 2 2746 3 55 2 4 8468 5

57 2 3 9999 7 25 3 4 5472 1 37 2 3 2757 4

28 1 1 7000 1

PEARSON CORR

OPTIONS

FINISH

AGE TO EDUCATN WITH SEX TO INCOME

1, 3

Question-Answering Systems

W. Cooper (1964) first described w1-.4t is now the standard

view of question-answering or fact-retrieval:

There are two propositions which are plausible
in themselves, and which, when viewed in conjunction,
focus attention on what we believe to be the fundamental
problem of Fact Retrieval.

Proposition I. A Fact Retrieval system must
normally accept most of its information to be stored,
and also its queries, in the form of natural
language sentences (e. g. English) rather than in
some artificial language selected for the purpose.

Proposition IL A Fact Retrieval system must
possess the capability of performing logical deduc-
tions among the sentences of its input language...

Together these propositions suggest that the
central theoretical problem of Fact Retrieval is to
develop a system of logical inference among natural
language sentences.
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We can categorize question-answering systems into two

types. Corresponding to an intensional view are the deductive

systems, to an extensional view are the relational systems. A

third type, the semantic net system (Quillian 1969), is an interesting

and novel attempt to combine an intensional view with an extensional

structure.

Deductive Que s tion-An s w e ring Systems

Deductive systems have evolved from artificial intelligence

research on finding deductive proofs of mathematical theorems.

The research has been generalized to deductions in a predicate

calculus environment, usually only the first-order calculus. The

question- answering systems, then, add to this work a translation of

the English input sentences into the predicate calculus, but other-

wise use the same techniques.

These deductive systems all assume the intensional view,

that is, they manipulate sentences and theories. The approach to

deduction is essentially syntactic: new theorems are added to a

growing store by grammatical manipulations of the previously

existing set. The most efficient current techniques, the resolution

methods, do work extensionally by trying to construct model.

If an appropriate model cannot be constructed, it proves the falsity

of some sentence: usually the negation of the theorem one is trying

to prove. However, the elements of these modes are sentences
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and clauses; one uses the linguistic entities as elements of models

in order to construct manipulable models.

There are several interesting aspects to the intensional

approach. The fiirst deals with t'io notion of atomistic completeness.

The concept of completeness, taken from logic, is the property of a

theory or model that all parts of that theory or model can be derived

from some basic set of primitive elementsthe atoms of that

theory or model. Applied to a data base, this means that all of

the data can be derived by application of recursive functions to the

atomic elements of the data base.

A good example is the grandparent relation. Suppose that the

parent relation is a primitive in some data base. Then one can

define the grandparent relation as the composition of parent with

itself: "grandparent" means "parent of parent. " In this case the

grandparent relation is totally dependent on the parent relation and

derives all of its characteristics from it; for example, the fact

that every person has four grandparents. At this point the grand-

parent relation has added nothing new, and all instances of the

term could be replaced by its definition.

Suppose, however, that one added the datum "the grandparent

of Mary is John" and that our data does not include Mary's parents.

Now grandparent is de-coupled from parent; it has more properties

and relationships to the rest of the world than is implied by the

parent relation. This data base no longer has the property of

atomistic completeness.
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A theory or model can be atomistically complete only if all

of its elements are of the primitive, atomic kind, with recursive

definitions added for higher-level structures. In an atomistically

complete model, with a primitive parent relation, the grandparent

relation can be either 1) defined solely as "parent of parent" and

thus completely coupled, or 2) defined primitively also, thus

completely uncoupled.

All of the current extensional systems are atomistically

complete, and it is only the intensional, deductive systems which

are not so restricted.

The ability to handle meta-level data gives these systems

their great power. The logic of the deductive systems is explicit,

and therefore can be manipulated instead of implicit in the

processing routines as is the case for other types of systems. An

example of this power is the fact that these systems can comprehend

data containing quantifiers as primitive items. "At least ten

people live in Boston, " as data, makes certain kinds of deductions

and answers possible, even if we are uncertain exactly who is in

Boston.

The cost of this power is clear; deductive systems use a

recursively-enumerable search procedure, rather than the

recursive procedures found in the extensional systems. By this

we mean that the set of theorems in a formal language is recursively

enumerable and not recursive. Thus one cannot determine the
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truth or falsity of any given sentence directly, but instead one

must list all theorems and see if the given sentence is among

them. This enumeration technique, the only effective procedure

for a recursively enumerable non-recursive set, has been shown

time and again to be much slower than a direct approach where

that is possible. This relative inefficiency limits the complexity

of query and the size of data base allowable. For example, a

recently developed system (Biss, Chien, and Stahl 1971, p. 303)

works with a data base consisting of 2000 English sentences, claimed

to be "larger than any other data base currently being used for

natural language [ deductive ] question-answering systems."

This fundamental limitation on efficiency may be bypassed to some

extent by a judicious combination of both intensional and extensional

approaches, which is the long-range promise of the semantic net

systems.

Fig: 6. --An example of deductive question answering.

Suppose the system (Biss et al 1971, p. 305) receives the

question: Do cars always have to yield to pedestrians? and it has

at its disposal the facts 1) Pedestrians not in a crosswalk must

yield to cars and 2) If x must yield to y, then y does not have to

yield to x.

The sintactic analysis of the question produces the form:

always(must(yield(car, pedestrian))). The semantics of the word

"always" converts this statement into
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V y(y must(yield(car, pedestrian))), where y is a variable

ragging over situations. This is further converted into:

V x1Vx2(must(yield(xi(car), x2(peclestrian)))), where xi is a

variable ranging over situations on car and x2 is a variable

ranging over situations on pedestrian.

The relevant data has been stored as must(yield((not(in

(crosswalk))) (pedestrian), car)) and V xVy(must(yield(x, y)). must

(yield(y, x))). The system tries to prove the question true by

showing that its negation contradicts the relevant axions. This it

will not be able to do, and so will eventually try to prove the ques-

tion false. In this case the system can prove that the question state-

ment itself contradicts the axioms, and so can be answered "no."

To do this the R2 system first rewrites the second axiom

as must(yield(x, y))V must(yield(y, x)) since A--.13 is equivalent

to AV B. Then, must(yield(x2(pedestrian), xi(car))) follows

from this and the question statement by recursively applying

high-order resolution. This statement resolves with the first

axiom if we let x2 not(in(crosswalk)) and x
1

0 (the empty

substitution), generating a contradiction.

The system can also output those situations in which a car

does not have to yield to a pedestrian, i. e. the instantiations of

xi and x2: when the pedestrian is not in the crosswalk.
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Relational Question-Answering Systems

Relational data systems take the extensional approach in order

to reach a usable level of efficiency. All of these systems use a

single type of modelspace, a relation algebra--a set of entities

and a number of relations among those entities. Such systems

are exemplified by the Relational Data File (Levein and Maron 1967)

and Converse (Kellog et al. 1971).

The notior of a relation algebra is a very general mathemati-

cal concept. It is general enough to be used as the basis for

mathematical model theory, which underlies the use of the term

model in this thesis. One can also consider set theory to be the

theory about a particular relation algebra, one with a specified

binary relation.

Thus a relation algebra has a wide scope. At the came time

its primitives, both entities and processes, are surprisingly

simple and few in number. This implies that it should be possible

to implement this type of system relatively easily and with a

great deal of attention to efficiency. Such implementation details

will be considered in a later sectio-i of this thesis.

The relational data systems therefore allow rich interconnec-

tion among the entities of the model, in contrast to the data manage-

ment and statistical analysis systems discussed earlier (or. this

point see Codd 1970). This type of modelspace, however, seems

to require atomistically complete models. What, then, are its

capabilities for deduction?
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One can distinguish two types of capability, that for global

deduction and that for local deduction. Global deduction, another

term for the usual type of deduction, is an intrinsically recursively

enumerable 7rocess as discussed above. The set of provable

theorems is in general not recursive, but is recursively enumerable.

Local deductive capability, i. e. the relational data systems, is the

ability to work with recursive subsets of theorems. Local

deduction denotes a recursive set of theorems and obviously is more

restricted than a full deductive capability.

SGme examples are in order. First, suppcse one had the

following two items of data, "Joe arrived in Los Angeles in 1960,"

and "Joe left Los Angeles in 1970." What can one say in regard to

Joe's whereabouts in 1965? On the basis of the data alone, nothing.

One can, however, include in the logic of the language enoul-rh

assumptions and rules of inference to be able to answer "Joe was

in Los Angeles in 1965." These assumptions and rules take the

form of recursive functions of the data, built specifically for

particular cases.

For a second example of local deduction, consider the ances-

tor relation (i. e. "transitive parent"). With an explicit logic and

relation algebra one could define the properties of transitive

relations with axioms and then deduce Joe's ancestors from the

data contained in the parent relationship. Local deduction here

implies that the meaning of "transitive" is defined by a specific
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recursive function rather than by axiom. One could still find

Joe's ancestors.

As a final example consider the most important aspect of

deduction--quantifiers. We will try to answer the question "Are

all men mortal?" by recursive methods. Obviously, if the

number of men is finite, one can simply generate each man in turn

and ask the appropriate question. But even where we wish to

allow the possibility of an infinite number of men, it is sometimes

a recursive problem. We might have the class of men a subclass

of the class of mortal things, and thus merely re-phrase the

question into a simple one about subclass relationships.

The point to be made here is that the relational data systems,

at least in their present completely extensional implementations,

are limited to local deduction. While local deduction is restricted,

it may provide enough power and efficiency for some areas of

application.

Thus the relational data systems represent a compromise.

They allow a fairly richly-interconnected universemuch more than

the data management systems, for example. Yet they are efficient

enough to handle reasonably large data bases. A description of such

a system constitutes Chapter III of this thesis.
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Reference Retrieval Systems

These systems are designed to automate the search of a

library's card catalogue, and in general facilitate the search for

books and articles dealing with some particular subject matter.

Reference retrieval systems are specialized versions of question-

answering systems; the restriction of purpose and data is made

for the purpose of more efficient operation. Gerald Salton, a

leading exponent of these systems, identifies (1968, p. 393) the

restrictions this way:

When comparing reference retrieval and data
retrieval systems, the main complications present
in the latter (and absent from the former) are
caused by the more detailed analysis of the stored
data necessary to operate a fact retrieval system.
Whereas, for reference retrieval, it is normally
considered sufficient to isolate the main objects
or entities useful for the specification of the subject
content of each stored item (the keywords, concepts,
descriptors, etc.), in a question answering system it
is necessary also to identify a large variety of
functional relationships between entities. Thus,
the semantic analysis must be much more thorough,
and it must notably include the identification of a
majority of the relations indicated in the language
by verbs and function words, such as conjunctions,
prepositions, and quantifiers.

Furthermore, a reference retrieval system is
expected to cope with only one type of question, expressed
in terms of a document set considered closed at any
given instant, namely "Does the stored collection
include items dealing with such and such a subject
matter?" On the other hand, a data retrieval
system must handle a much larger variety of queries,
including also queries for which an explicit answer may
not be stored but may first have to be generated from
the information actually available.
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The goal of reference retrieval is to display all those

documents deemed relevant to the subject matter contained in a

query. Relevance, of course, is scarcely understood, and so

the central notion used in these systems is that of a "concept. " If

one has an operational definition of concepts, and some way to

measure distance between concepts, one can define relevance as

a measure inversely proportional to this distance function. The

difficult work on reference retrieval consists of defining "concept"

and "distance between concepts. "

The usual operation of such systems is over some identi-

fiable universe of discourse. First the appropriate concepts are

decided upon, and then all documents in the collection are rated

on their distance to each concept. Finally, a query is entered

into the system and also rated on each concept. Then the correlation

coefficient between the query ratings and document ratings are

computed for every document in the collection, and the ones

with the highest correlations output.

This type of operation, typified by the Smart system of

Salton, assumes a rather fixed set of data and certainly a static

data structure. In fact, the data structure involved is a sequential

file of vectors, one vector per document. Each vector contains

the rating of each concept for that particular document and can be

(and is) considered to locate a point in n-dimensional space. The

query also represents such a point, and relevance is defined by
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some n-dimensional distance function. A great deal of work is

being done on clustering, that is representing a group of closely-

related documents by one representative description. These

techniques are aimed at improving efficiency and especially search

times, and lead naturally into other file structures, such as inverted

or multilist.

The subject of indexing (i. e. what are concepts?) has been

active, breaking into two camps: clustering, where all documents

are on the same level, and hierarchical indexing, where abstracted

categories are combined in a tree-like structure. Hierarchical

indexing appears to be winning in both efficiency and acceptability,

especially as the systems become interactive. In fact, the future

points obviously toward more general concept structures as the

index attempts to mirror our own conceptualization, and therefore,

toward the convergence of these reference retrieval systems

with the more general question-answering systems.

This projected assimilation of reference retrieval systems

is caused by 1) the emergence of efficient question-answering

systems; 2) the e,dstence of economic interactive computer

systems; and most importantly 3) the growing awareness that the

user must have a great deal of freedom and control in his

conceptualization and search processes.



-52-

Fig. 7. --An example of reference retrieval systems

The document collection being searched in
this case consists of the 405 abstracts published
in the IEEE Transactions on Electronic Computers
for March, June, and September, 1959. The
collection covers all fields of the computing literature.
Sixteen abstracts were manually judged to be
relevant to the request. (Salton 1968, p. 467)

The search request:
Give algorithms useful for the numerical

solution of ordinary differential equations and partial
differential equations and partial differential
equations on digital computers. Evaluate the
various integration procedures (try Runge-Kutta,
Milnes method) with respect to accuracy, stability
and speed.

answer correlation

384 stability 0.8567

360 simulate 0.7741
386 eliminati 0.7457

392 on comput 0.6571
200 solution 0.6443

85 note on an 0.6372

387 boundary 0.6171

103 Runge-Kut 0.5874

102 On the so 0.5648

390 Monte Car 0.5448

identification

Stability of numerical solution of
diff. eq.
simulating second order equations
elurnination of special functions
from diff. eq.
on computing radiation integrals
solution of algebraic and transcen-
dental eq.
note on analogue techniques for
resolving
boundary contraction solution of
Laplace
Runge-Kutta methods for integrating

eq.
On the solution of Pcisson's differ-
ence eq.
Monte Carlo solutions of boundary
value problems
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Simulation

A simulation is a tangible, manipulable model that corre-

sponds to a theory about some relevant aspects of the world.

Simulations are usually dynamic models, that is, explicitly time

dependent, and are therefore represented by processes which

operate on some basic structural model. The execution of a

simulation calls into play each of these "events, " which modify

the model in some predetermined way. The main use of such

simulations is to unfold the dynamic aspects of a model, especially

those models too complex to be adequately handled by formal

mathematics.

There are two types of simulations currently receiving

attention. The continuous simulations reflect the view that time

is a continuous real! variable and the processes involved operate

continuously and often simultaneously. These models are very

often translated into sets of differential, equations and solved

numerically. Typical application areas might be electronic

circuit design, neural network research (e. g. the Hodgkin and

Huxley nerve membrane equations), and atmospheric pollution

studies.

The second type is called discrete simulation. Here the

individual events are considered more important, and are usually

distinguishable from each other and are quite complex. The

relevant times are only those at which events happen - a discrete

sequence of ascending instants. Examples of such simulations
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abound in the social and behavioral sciences, such as the formation

of coalitions in international politics or the flow of traffic through

a city.

The purpose of a simulation is the same as _that of any theory.

It is used to gain insight into the phenomena under study. Simulations

also have the same characteristics as theory: they cE,n be more or

less generalized, their primitive entities may or may not be v'ell-

chosen for the subject area, they may fit the data more or less

closely, etc. The importance of simulation is that they are

tangible theory, and thus can be studied, manipulated, and changed.

While simulation is an important vehicle for conceptual

development, as a data analysis tool it has one important defect:

it underemphasizes data. Simulation is totally overbalanced on the

side of theory; any data produced by a simulation, and any data

compared to these outputs, are to be utilized by some external

process. Simulations merely produce data - what happens to it

after that is left to the imagination. What this means, of course,

is that a combination of theory-building simulations with a data-

oriented analysis system could be extremely powerful. The

conceptual pressure for such a combination is increasing, so that

it will not be too many years before it exists.
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Fig. 8. --An example of a discrete simulation (Gordon 1969, p. 125)

Consider the example of a simple telephone system. The

system has a number-of telephones, connected to a switchboard by

lines. The switchboard has a number of links which can be used

to connect any two lines, subject to the condition that only one

connection at a time can be made to each line. It will be assumed

that the system is a lost call system, that is, any call that cannot

be connected at the time it arrives is immediately abandoned.

A call may be lost because the called party is engaged, in which

case the call is said to be a butsy call; or it may be lost because

no link is available, in which case'it is said to be a blocked call.

The object of the simulation will be to process a given number of

calls and determine what proportion are successfully completed,

blocked, or found to be busy calls.

Suppose each line is treated as an entity, having its availabil-

ity as an attribute. A table of numbers is established to show the

current status of each line. It is not necessary that a detailed

history be kept of each individual link, since each is able to

service any line. It is only necessary to incorporate in the model

the constraint imposed by the fact that there is a fixed number

of links. Under these circumstances, the group of links is

represented as a single entity, having as attributes the maximum

number of links and the number currently in use.
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Each call is a separate entity having as attributes its

origin, destination, and length. There is a list of calls in progress

showing which lines each call connects and the time the call

finishes. It will be assumed that the call is equally likely to come

from any line that is not busy, and that it can be directed to any

line, other than itself, irrespective of whether that line is busy

or not.

The simulation proceeds by executing a cycle of steps to

simulate each event. The event of disconnecting a call merely

updates the status information, while the event of an arriving call

must check to see whether the call can be processed, and if so

updates records and schedules the disconnecting event. Arrival

times, source, destination and length of call are all random

variables. Statistics are collected throughout the simulation and

after some predetermined elapsed time or number of calls the

simulation is stopped and the results output.

The Boundaries of the Practicable

What are the real problems that data analysis systems

designers face? It is not in the area of data collection, for our,

current ability to collect and communicate data overpowers our

ability to find appropriate conceptual frameworks for the data

(consider the 96,000 reels of magnetic tape holding social

security data). Thus our real need is to improve the aid we give

to the conceptualization and analysis process.
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Static limitations are the size and variety of the models our

systems can handle. There are some extremely large sets of data

available today, such as the individual-level raw census data, for

which no analysis systems exist. It is only at the large size, say

the census data aggregated to the census tract level, that either

the data management or the statistical analysis systems became

useable. Both of these system types permit only simple models

in their conceptual space, and so large amounts of data can only

be viewed in simpleminded ways.

As the amount of data decreases systems with more complex

conceptualizations become effective. A complicated simulation, for

example, might have fiorn several hundred to several thousand

entities or items of data - a fairly small amount. The deductive

systems usually can handle only a few - up to a thousand - axioms

and theorems. This inverse relationship between data base size

and complexity forms an important boundary on the scope of

present activities. Figure 9 attempts to depict this relationship.

It is a coarse estimate of the size and complexity capability of each

of the contemporary system types. For comparison, the raw

United States census data should contain about 1010 items of

data, and at least have kinship-type interrelationships between the

entities.
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Fig. 9. --The contemporary relationship between data base size
and complexity

We have stre,---.ed throughout this thesis the importance of

the dynamics of conceptual adjustment. The fundamental problem

facing systems designers is how to aid such adjustment, not

hinder it as do most present systems. The goal: computer

systems which help their users find insightful conceptualizations.

Computer systems could help in two ways. Their limitation

io some modelspace/language means that we have fewer models to

consider as relevant. This pushes the common features of the

models into the background, since they are pre-determined. We

can concentrate on the differences among the set of models or

theories. The system could help us explore these theories, by
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making it easier to express them, by aiding in the process of

matching theory to data or even by applying some known optimizing

technique.

More difficult and more important are computer systems

which facilitate language change. This is what we really need in

our very dynamic world. The conceptual rigidity of our computer

systems is the significant boundary.

Keeping these boundaries in mind, one can ask where the

current thrust of research is heading. The answer, unfortunately,

is simple: computer scientists are busily attempting to find a

universal programming language in which all problems are to be

solved (the old UNCOL ideal), and a universal data structure or

data structure mechanism.

The analysis of information given previously shows this to

be a misdirected effort, except possibly in one instance. While

it is not possible to have a universal language, it is worthwhile to

seek a generalized language useful as a system designer's

language, or meta-language for other users. With this much

narrower goal in mind, the current research becomes practicable.

Here, however, the most difficult part becomes finding a

language which is extremely efficient in implementation, since

we already have many generalized-enough languages (e. g. set

theory, graph theory, machine language, or PL/I).

In a similar response to the need for a multiplicity of data

structures, some computer scientists have been attempting to (
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handle totally unstructur, d data (a contradiction in terms) or,

failing that, to find a universal data structure (Earley 1971).

This notion losep by the same criticism of a universal program-

ming language: even though a terribly generolized and abstract

structure might be able to handle almost all known applications and

conceptualizations, it would simply not be very informative in most

contexts. A parallel can be found in mathematics. All theories

and entities in mathematics can be expressed in set theory and

the predicate calculus. Yet aLlysis talks of real and complex

numbers, and algebra of groups, rings, and fields. The level

with which they deal effectively is not the lowest level of

conceptualization possible.

A current approach to the need for idiosyncracy is that of

providing a generalized mechanism which is capable of being

specialized as necessary. An awareness of this situation in the

domain of programming languages hs..3 led to the extensible

languages:

There are two basic premises which underlie
the development of ELF. The first of these is
that there exists a need for a wide variety of programming
languages; indeed, our progress in the understanding
and application of computer: will demand an ever widening
variety of languages. There are, in fact, "scientific"
problems, "data processing" problems, "information
retrieval" problems, 'symbol manipulation" problems,
"text handling" problems, and so on. From the
point of view of a computer user who is working on one
or more of these areas there are certain units of data
with which he would like to transact and there are
certain unit operations which he would like to perform
on these data. The user will be able to make effective
use of a computer only when the language facilities
provided allow him to work toward a desired result in
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terms of data and operations which he chooses as
''being natural representation of his conception of
the problem solution. That is, it is not enough to have
a language facility which is formally sufficient to allow
the user to solve his problem; indeed, most available
programming languages are, to within certain size limitations,
universal languages. Rather, the facility must be
natural for him to use in the solution of his particular
problem. . . .

It is our contention that the most reasonable approach
to providing the desired variety of language facilities
is that of providing an extensible language supported
by an appropriate compiling system. We do not,
however, suggest that we can'now devise a single
universal, core language which will adequately provide
for the needs of the whole programming community;
the diversity in "styles" of languages and translation
mechanisms will probably always be sufficient to encourage
several language facilities. ELF, which is the subject
of this paper, provides a facility in the "style" of such
languages as ALGOL-60, PL/I; and COBOL.
(Cheatham et al 1968, p. 937)

More generally, there are developments such as the REL

system, described in detail below. This is a generalized language

system, designed to handle a large variety of specialized languages,

which need not be related to each other and can indeed be extensible

themselves.

These advances portend the proliferation of "natural"

languages and made-to-order conceptualizations. This shift

will force attention away from computer techniques toward

information techniques. We are facing the beginning of a real

information science and with it, an information engineering.
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CHAPTER III

THE REL DATA ANALYSIS SYSTEM

Chapter I developed the theoretical position of data analysis

as an informational activity. Chapter II presented a descriptive

lomy ..f computer systems for the support of data analysis

a a:-1 assessment of the present boundaries of their application.

In this chapter, we turn to consideration of a particular data

analysis system - the REL (Rapidly Extensible Language) System.

The architecture of REL reflects both our theoretical understanding

of system requirements and our practical understanding of present

capabilities.

Development of the REL system is based upon two goals:

(1) to bring into concrete realization the theoretical view of

Chapter I; and (2) to reach operational status with such a system

at the earliest possible time.

The need for operational status on real applications derives

from the lack of experience with these advanced systems, and how

they affect information processing and data analysis in, particular.

In a sense, the REL System is a vehicle for testing our conceptual-

ization of data analysis. We have little empirical evidence of a

form that could be called scientific (namely from controlled

experiment or planned intervention) of the conceptual processes.

The view presented herein, namely that the task of "knowing" is

finding the most revealing conceptualization, is only one .of several,
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and is by no means the most widely held doctrine of information

processing. A popular, and contrasting position is that the

structure of reality is to be discerned in the data taken from that

realitr, rather than imposed by the researcher as a way of giving

meaning to observational evidence.

REL involves mechanisms for accommodating conceptual

change and extension, fcr experimenting with the imposition of

structure on data. The observation of serious applications of the

system to actual data analysis .;asks is expected to reveal much

concerning the dynamics of information processes, by charting the

use and evaluating the effectiveness of these mechanisms. In this

way we believe it will reflect on the efficacy our theoretical

position.

Since our interest in REL is based upon these considerations,

experiencing the actual operation of the system on real data 1.-.ecomes

an important goal. How has this constraint influenced the design

specifications of REL? The data bases available today prejudice

the choice of system type. In terms of size, most current data

bases contain about 10,000 to 1 million items. As one example,

98% of the 65 data oases archived by the Inter-University Consortium

for Political Research in 1970 were within that size range (ICPR

1970). Near the end of the last chapter, Figure 9 related system

type to the data base size which could reasonably be handled. On

this rough graph we find that (1) the data management systems can
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comprehend far larger amounts of data; (2) the relational data

systems fall exactly in this range; and (3) both the deductive and

complex modeling systems are unable to cope with this many items.

As we look deeper, we see two interacting effects. First,

consider the computing times associated with tasks typical of

each of the data system mathcds. We can state broadly, though

not precisely, that (1) the data management systems' processing

is simple and thus extremely fast; (2) the relational data systems

are slightly more complicated and slower; and (3) the processing

of the deductive or modeling systems is rather complex and time-

consuming. Although the data management systems alone can

handle the extremely large data bases, these bases have become

so huge as to be unuseable in any case. With smaller data bases

the relational data systems cost very little more and are enormously

more pow'ful. For the kinds of applications where data manage-

ment systems are useful, other types of systems can do much

better.

Suppose we now consider, the computing time and cost for

some fixed analysis task, in data bases typical of each method.

Here we find that, on comparative tasks and system specific data

bases, the deductive and complex modeling systems are so

powerful that they can accomplish given tasks easily, and hence

have a small cost. The relational data systems are more restricted

in capability, and thus will cost more to do the same task on

bases specific to their application. The data management systems



are extremely restricted - standard analysis tasks on their

typical data bases are prohibitively expensive. One pays a low

price for the restriction from deductive methods to relational

methods in terms of analysis capability, aLd receives a very high

payoff in terms of data base capability. For the areas in which

deductive techniquIs are applicable, one can still perform a major

portion of the task with somewhat less capability, (namely the local,

rather thLn global, deductive ability). Thus the relational data

systems are in exactly that compromise position today which

promises a significant advance in operational capability.
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The REL System

The REL System is predicated on the view that: (a) the

central human information process is to seek the appropriate

conceptualization; and (b) one's language is both the articulation

othat conceptualization and the media for molding that conceptual-

ization. It is a generalized computer system that supports a large__

variety of languages each specialized - by grammar, data struc-

ture, and processing algorithms - to some problem area. The

system encourages the development of _these "natural" languages-

and facilitates their implementation and extension. The REL

System, then, is a maximally supporting environment

"natural" computer languages are implemented. It puts only

minimal constraints on possible languages, allowing the most

general grammars, data structures and processing algorithms.

Minimal system constraints mean that each language can seek its

own efficient implezrientation, tailored and e ended in response to

the conceptualization of the particular user.

The System provides strong supportive resources. The

REL System is a sentence driven, syntax directed interpreter.

After a sentence has been input, -it undergoes syntactic analysis

by a parser. This produces a complete deep-structure phrase

marker which in turn is used to direct the semantic processing

of the sentence. Conceptually, therefore, the system can be

described by the following diagram:
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Fig. 10. --Syntax-directed interpretive systems
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The interpretation of a sentence depends solely upon the

grammar, the syntactic routines, and the semantic routines of a

particular REL language. Thus an REL language is defined by

exactly these three elements. The REL System consists of the

total framework in the above diagram which integrates these

elements and applies them to the syntactic and semantic analysis

of the input sentences.

This overall REL System framework can be broken down

into four major parts:

a) the language processor, including as major subparts the

parser and :he semantic processor;

b) the programming environment, consisting of two major

components -the list processor and the paging mechanism;

c) the language extension component. namely the language

building routines and language extension utilities;

d) the operating system components (over and above

OS/360 itself) - the input/output components, job control language

catalogued procedures, master routine, etc.
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(a) The heart of the REL System is the language processor,

consisting mainly of a parser and a semantic processor. The

properties of these two programs, their efficiency, and how they

are integrated determine to a large extent how the system works.

The language processor is incomplete until provided with a grammar

and corresponding interpretive routines; with these it becomes a

total language system. The range of languages is determined

mainly by the power and generality of the parser and semantic

processor. REL uses a bottom-to-top general rewrite rule parser.

(b) Language processing and the stack organization of syntax

directed interpretive routines, in present state of the art systems,

make dynamic use of memory through list processing schemes.

Such a scheme underlies the REL language processor and provides

the media between the language processor and the syntactic and

semantic routines. This general list processing mechanism is also

made available to the syntactic and semantic routines themselves.

In a parallel fashion, the paging mechanism is a general

resource used by both the REL System and the interpretive .routines

underlying any given REL language. These interpretive routines

access pages as tabula-rosas. Thus they can organize and access

data on these pages at the design discretion of the language

programmer. Therefore REL accommodates any data structures

(including, of course, programs themselves if so desired). Further,

the interpretive routines have control of individual pages and the

paging area, thus are in a position to optimize their own page
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referencing algorithms and data organization. At the same time

I/O, dynamic address relocation, etc. , are handled automatically

by the paging mechanism.

(c) Extensible languages are those which can change, by adding

new syntax, during the course of conversation. REL has been

designed particularly to facilitate the development and use of this

type of language. There are utility programs that build the

three language ingredients - grammar, syntactic routines and

semantic routines - into an integrated language, producing the

necessary grammar table acid link-editing grammar table and

interpretive routines into internal forms which can be efficiently

applied by the language processing system. There is a second

family of utility routines which manipulate the grammar table and

organize the paging of definitional structures. These utilities

are available to each REL language, providing the mechanisms of

language extension.

(d) Finally, REL is implemented on top of OS/360 through

a series of eight catalogued procedures, and the master routines

that organize access to the relevant data sets, initialize list

processing and paging, handle query and answer input and o'itput,

and schedule the successive steps of language processing.
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The REL Data Analysis System

REL consists of (a) the REL operating environment, and

(b) REL languages built within that environment. The last section

discussed the environment; we now turn to the application of that

system. This dissertation is not directly concerned with all of

the various language developments that are presently underway,

e. g. the REL Animated Film Language and the REL Applied

Mathematics Language. It is concerned only with the REL Data

Analysis System, based upon !-he REL English language. Moreover,

our particular concern is even more narrowly defined. The syntax

of REL English, i. e, its capability to be queried in what is

ostensibly natural English, is not the subject matter of this

thesis, both because it has not been a part of this thesis research

and also because the central remaining operational problems of

building an effective data analysis system do not lie in the areas

of syntax or language processing.

The limitations on current question-answering systems lie

mainly in the semantics, especially the problems of efficiency

which occur for i?.ny reasonably large sized data base. Such data

bases will not fit into the mair memory of a computer, but instead

must be stored on much slower, secondary memory devices

(typically magnetic disk). The bottleneck today is the amount of

access to this secondary memory, for its relative slowness

dominates all other processing time. The implications of this
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problem of access to secondary memory and the development of

effective solutions to it constitute the core problems of this thesis

research.

These problems are central to data management and data

analysis systems. They are approached here in a specific context,

namely the REL Data Analysis System, with all that implies for

a rich but restrictive programming and operating environment.

Nevertheless, our discussion of these problems is directed toward

contributing to a general understanding of these problems and the

tactics for their solution. The fact that we work within the REL

environment serves largely to give concrete specificity to our

results.

Consideration of the problems of secondary memory access

naturally divides into two specific technical areas:

1) data structures and the algorithms for processing

them, and

2) the organization across a sentence (or program) of

the quantification of variables.

Eacl, of these will be considered in detail.

Data Structures and Processing

We shall attempt to minimize the number of accesses to

secondary memory in .3. paging environment. The environment

will be unusual, however-, in that semantic routines will be able

to exercise complete control over the transmission of pages, rather
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than being dependent on some generalized system page replacement

algorithm. This will enable us to attempt to find true minimums.

In any relational data system, ubiquitous to the semantic

processing of nearly every query and embedded deep within that

processing is a central routine, namely: to find the image of a

given class under a given relation.

Examples are:

A: parents of people

B: prices of stocks

C: salaries of employs

D: allies of countries

Besides being the basic operation in a relational system, one

can see that the internal processing will be rather similar to that

for almost all of the other large data operations, such as the

intersection of two classes. Most of what can be said on the image

problein is directly applicable to the other important processes

in the system.

For this single task, then, we will see the effects of data

structure and processing algorithms on the number of page trans-

missions, and therefore on overall efficiency. The coordination of

data structure and algorithm is important, for there are many

documentations of the catastrophic failure of either not coordinating

the two or entirely ignoring the properties of a hierarchical

memory (e. g. Bra.wn and Gustayson 1968; McKellar and Coffman

1969).
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We therefore turn directly to the analysis of obtaining the

image of a class under a relation. The class can be thought of as

a set of pages, equivalent to a file, containing some identification

of the members of that class. We define c to be the number of

pages covered by the class, and c* to be the number of members

in the class. Generally, c and c* are roughly proportional,

depending on the number of elements which can fit on a page

(usually 100 to 1000).

We now consider a number of alternative methods to store

and process data, and the implications of these methods on

finding the image of a relation. As each method is considered, it

will be illustrated in terms of the following four- examples:

Example A: "parents of people"

In this example we assume a data base which includes

family relationship information. Such a data base could -be from

anthropological field data concerning an ethnic group or primitive

tribe. We shall assume that there are 1000 people and that each

has two parents.

Example B: "prices of stocks"

There are 2000 companies listed on the New York Stock

Exchange:whose prices vary over time. This data base will cover

50 time periods, containing the price of each stock at each time

period (e. g. weekly price data for one year).

Example C: "salaries of employees"
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A typical personnel file for a large industrial firm contains

data such as the current salary level for each employee. This

example assumes 10, 000 employees and that each has a single

salary figure.

Example D: "allies of countries"

The United Nations has about 150 member nations. Over

the lifetime of that organization, both the membership composition

and the web of alliances has been changing. We will postulate an

average of 25 allies for each country.

Method I: Fixed Format. This method embodies a fixed-format

data structure together with a direct accessing scheme. Each

individual in the data base has associated with it a page or set of

pages. All data related to that individual are kept there, and

corresponding to every relation is a fixed location in that data file

in which the value of that relation is stored. The identification

associated with an individual is the page address of its data file.

With this data structure the algorithm for finding the image

of a given class under a specific relation becomes: (1) get a

member identifier from the class; (2) read the data file addressed

by that identifier; (3) go to t he fixed location in that file specified

by the relation and find its value; and (4) save that value in an out-

put class and repeat the algorithm (execute step 1).

The analysis of the paging behavior for all of the methods

discussed in this section will be standardized in two ways. We
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will assume that all data is on secondary memory at the start of

the algorithm (an assumption we will reconsider later in the case

of repeated applications of relations). We wir also ignore the

page transmissions required for the image class - the output

of the algorithm. This is done because we do not know the size of

the output class, and also because the number of page transmissions

will be the same for all methods. Thus it does not affect their

relative efficiency.

The fixed format method requires that we read at least one

page for each member of the class, that is, in step 2 of the

algorithm.. We will assume exactly one page per member, since

the fixed location for our given relation should enable us to directly

address the right page. Add to this one-page-per-member the

reading of the class itself and we find that the number of page

transmissions required by method I: fixed format is (c* + c).

We will now consider the meaning of this figure in each of

our examples. A constant factor in these calculations is the number

of member identifications which can be placed on a single page.

This number determines c as a function/of c*: we shall use the

REL Data Analysis system figure of 3531.

1 The REL Data Analysis system has a page size of '048 bytes,
a class element size of 8 bytes, and a 24 byte head. at the top
of each page. .
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11 parents of people"

For 1000 people c* = 1000, and c = 4. The total number of

page transmissions will be: 1004

Example B: "prices of stocks"

There are 2000 companies, and therefore c* = 2000, c = 8,

and the total is: 2008

Example C: "salaries of employees"

The company has 10,000 employees: c* = 10,000 and

c = 40 10,040

Example D: "allies of countries"

We have 150 countries, thus c* = 150 and c = 1, for a

total of 151

The fixed format method does not distinguish among our

examples, except on the basis of the size of the class. Secondary

random-access storage media today consist of either fixed- or

moving-head magnetic disks. The fixed-head disk can access any

page in about 20 milliseconds, or 50 pages per second. Our

examples thus have the following, more easily interpreted, elapsed

times:

A. 20 seconds

B. 40 seconds

C. 3 minutes

D. 3 seconds

Example C clearly approaches the size limit fox interactive response

for the fixed-format, direct-access method.
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Method II. Ring Structure. In this data structure each individual

and relation consists of a linked list of elements, circularly

closed. An element contains space for the link and an extra space

for a cross -link. A primitive item of data such as "Robert is

the father of Sue" is maintained by creating a cross-connecting

ring. This ring links an element of the "Sue" ring to an element

of the "father" ring, and then to an element of the "Robert" ring.

The representation of this structure o ) pages places each

individual or relation ring 3n a page (or list of pages). The

cross-rings are then represented by pointers connecting elements

on each of the rings involved.

With this data structure we have two algorithms for

finding the image - one for the relation and another for the

converse of that relation. To simplify matters we will assume that

every element contains the identification of the cross-linked ring

along with the pointer into that ring. This me -ns that we do not

have to load the ring to see which ring it is.

The algorithm for finding the image of a primitive relation

is: (1) get the identification. of a class member; (2) load its

associated ring and search it for an element containing the

identification of the given relation; (3) when such an element is

found, walk to the ring element of the relation by loading that

page, and pick up the identification of the image; (4) place that

identification in the output class and repeat from step 1.
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For the converse of a primitive relation we,use 'the following

procedure: (1) get the identification of a class member; (2) search

the relation ring for an element containing that identifier; (3) when

such an element is found, walk the cross-ring to the range element

and pick up the identifier of the domain; (4) output it and repeat.

An early such use of ring structures can be found in F. B.

Thompson's classic DEACON work (Craig et al. 1966). DEACON

used "referent rings" and "connective rings" and contended that

"ring structures are adequate for storing a wide range of richly

interrelated data that is pertinent to such functions as intelligence

analysis, management planning and decision making." (p. 366).

The data structure described above was actually implemented in

earlier version of REL English (Thompson et al. 1969).

The analysis of paging behavior for ring structured data

is slightly more difficult. For primitive relations, we must

load the ring corresponding to each individual in the class (step

2 of the algorithm) plus some number of pages for the relation.

We now need three more parameters: r, the number of pages

taken by the relation; r*, the number of elements in the relation;

and K, the number of page frames in main memory available

to our algorithm.

The number of relation pages which -must be'loaded can be

estimated by consideration of the following two cases. First, if

the relation is small enough to fit into main memory (r < <K), one
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need never load more than r pages. If the relation is large, how-

ever, one may be in a position where every access to the relation

requires another page load. This would happen if the particular

page holding the relation element was never in main memory when

needed. Thus the number of page transmissions lies between

c + r) and (c* + c + c*) - always greater than the (c' + c) for

the fixed format method. These figures also assume that each

individual ring is only one page long.

The analysis for the converse relation algorithm is similar:

the number of page loads is dominated by c*. Here we must load

the page of the range element for each class member identifier

foind in the relation.

Example A: "parents of people"

In a data base consisting of 1000 people we will have a

parent relation with 2000 elements. With good packing a ring

element will fit in 12 bytes, or 168 elements per REL page.

Thus, c* = 1000
c = 6
r* = 2000
r = 12

Since there are only 12 pages containing the relation and we can

expect al.:put 20 page frames, the total number of page loads will

be: 1C18

Example B: "prices of stocks"

Here there are 2000 companies and 50 prices for each, so

that the relation becomes large: 100,000 elements.
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c* = 2000
c = 12
r* = 100,000
r = 600

If we have but 20 page frames available, there is only a small

chance that a relation page needed is already loaded. Thus, we

will need essentially 2 (c*) pages: 4012

Example C: "salaries of employees"

The sheer size of c* dominates:

c* = 10,000
c = 61
r* = 10,000
r = 60

There is a one-third chance that a relation page will be in memory

when needed, and so the expected nurIber of page loads is

(c* 4 + c*): 13,360

Met. .1111. Relational Data Structure. The preceding two

methods were limited by the need to bring in a page for each

member of the class. The relational data structure overcomes

this difficulty by rearranging the data to be local, a property that

data which must be accessed ir. a group is physically near also. In

this data structure a relation consists of a list of pages whose

elements are ordered pairs - the Ventifier of an argument and

the identifier of a value. The relations contain all of the data in

the data base; there is 7 longer any need for pages associated

with individuals.
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A simple algorithm for finding the image of a given class

is the following: (1) get 1-1-c ..s.drttAfi r of a class member; (2) search

the entire relation for ordered pairs with matching first element;

(3) when one is found, output the second element of the pair;

(4) repeat from step 1. The converse of a relation can be found

by matching on the second half of an element.

This method is not useable because of.its paging character-

istics. If the rt-lation is small enough to fit into main memory,

we can load it and then read the pages of the class one at a time.

With K available page frames, we must have r s K-2 so that the

relation will fit alongside one input class page and one output class

page. In this case, we will have read the relation once, and then

the class once, for a total of (r c) page transmissiors.

Suppose, however, that r >K-2, that is, the relation is too

large to be contained in availr.ble memory. Now for every class

member all r pages of the relation must be loaded, since the

cyclic nature of the accessing of relation pages always finds that

the next page needed is on secondary memory. Thus in this case

the algorithm loads (r*c*) pages.

Example A: "parents of people"

In this data base of 1000 people and 2000 parents we have:

c* = 1000
c = 4
r* = 2000
r = 12
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For K available page framt. , if K Z 14 we. havr.::: 16

if K is smaller, thea we need: 12, 000

Example B: "prices of stocks"

Here c* = 2000
c = 8
r* = 100, 000
r = 596

We can assume that the relation does not fit into main

memory. Thus the total number of page loads is: 1, 206, 000

Example C: "salaries of employees"

c* = 10, 000
c = 40
r* = 10, 000
r = 60

For K z 62 we have: 100

For K <62 we need: 000, 000

Clearly this algorithm collapses when the relation is large,

though with enough main memory it is more efficient than the

methods depending on c*. The next method is a modification of

this one, which attempts to overcome this difficulty.

Method IV Generated Relational Data. The primary tenet of

good programming practice in a paging environmatnt is that one

should utilize as rrv.ch data as possible from a page once it has

been loaded. This method attempts to achieve efficiency with

the relational data structure 'by manipulating the sequencing of

page loads and identifier comparisons.
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Suppose that the algorithm knows the value of K, the number

of available page frames. It can then consider the relation to be

composed of a sequence of sub-relations, each small enough to be

held in main memory. Now the algorithm can form the iinage of the

given class under each subrelation in sequence, using the simple

Method III, and concatenate the results. The fact that the sub-

relation can be loaded in its entirety meanF efficient processing

for each segment.

This algorithm, which we will call GEN-R, is: (IA load

the next K-2 pages of the relation; (2) read through the entire

class, one page at a. time, and form the image of the class under

that subrelation; (3) repeat the process until the relation Is

exhausted.

There is a dual to this algorithm, called GEN-C, which

breaks the class into small sub-classes: (1) load K-2 Ages of

the class; (2) read through the relation, one page at a tf.me:

(3) for each relation page in memory, form the image of that sub-

relation and subclass; (4) after.the entire relation has been read,

get the next subclass and continue.

'or these algorithms the analysis of paging is quite simple.

The GEN-R algorithm structures the relation a [ r 1 subrelations,

each, except possibly the last, (K-2) pages long. The algorithm

reads, through the class once for each subrelation, for a total of

C . ---xl. 1 page loads. The relation itself is read only once. Thus
K-G
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the GEN-R algorithm requires r + c K 2 page transmissions,

and GEN-C, since it is entirely dual, requires c + r c
K-21

The relational data structure, with no further organization,

requires a minimum of (r + c) page loads. This number means

that each clas- page and each relation page is loaded once and

only once. Wen r sK-2 the GEN-R algorithm achieves this

minimum; when c 1<-2 the GEN-C algorithm does, These

algorithms in general are sensitive to ..Le relative sizes of K and

r or c. The examples below are therefore presented with v .Tying

values of K, representing between 10 and 50 available page frames.

Example A: "parents of peoi,le"

there are relatively few people, the number of pages

involved here is small. The algorithms will be at the minimum

values quickly.

=4
c* LAO
r = 12
r* = 2000

K(number of page frames.) GEN-R GEN-C (number of page loads

10 20 16
20 16 16
30 16 16
40 16 16
50 16 16

Example B: "prices of stocks"

In this case the relation is large, yet the class is small.

Under these circ mstances the GLN-C algorithm minimizes the
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number of page load immediately; the GEN-R algorithm needs

more space but is not too inefficient.

c = 8
c = 2000
r = 596
r* = 100,000

GEN-R TEN -C

10 1196 604
20 868 604
30 772 604
40 724 604
50 700 604

Example C: "salaries of employees"

Neither the relation nor the class will fit in main memcry

until K is fairly large. Yet the numbers of page loads are only

a few times the minimum.

c =
c* = 10,000
r = 60
r* = 10,000

K GEN-R GEN-C

10 380 340
2%' 220 220
30 180 160
.,0 14.: 160
50 140 100

Example D: "allies of countries:

The class is so small that this has become an extremely

easy case<

c = 1
c* = 150
r = 23
r* = 3750



-86-

K GEN-R GEN-C

10 26 24
20 25 24
30 24 24
40 24 24
50 24 24

Method J. Sort/Merge. The technique of sorting data has been

used extensively, and sometimes unthinkingly, by the data

processing communibr. We shall consider the implications of

sorting the relational data structure. The power of the sorti...g

technique stems from the situation in hich both the class and

the relation are properly ordered. In this case one can read

through both class and relation simultaneously, keeping

synchronized by use C. the sort order: a merge process. This

requires that each r.ztga in both the class and relation be laded

once and only once fer a total of (r + ) page loaes. 2

Thus, on the a.seurnption that the relation a:ad class are

already sorted, the number of pa ge loads is at the minimum for

the relational data structure. However, since we cannot

2 The mathematical purists might argue that not all r pages of the
relation need be loaded, since once the class is exhausted the
merge. process can stop, and vice versa. However, suppose one
assumes that the individuals in the data base are numbered frorr
T to N, and the class and relation contain random samples of
individuals. Then the expected value of the maximum individual,

e. the last, in the relation and class is r* N and c* N,
7;71i. 77-7

respectively (Feller 1950, p. 212).
This means that for sizeable r* and c* we can expect to load
every single page in both relation and class- hence this factor is
ignored in the page transmission calculations.
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guarantee that pre-ordering, this absolute minimum does not

tell the whole story. A sort, if needed, can easily do more paging

than some more sophisticated algorithm.

Sorting can be necessary under several conditions. First
consider the relation. A binary relation can be ordered on either

its domain or its rangy One order is needed for the relation and

the other for its converse. The relation could be duplicated, and

ordered both ways. This has been ,done, in fact, for small data

base systems (Levien 1969), but this solution wastes expensive

secondary memory. Further, the use of n-ary relations (n > 2)

means that the relation must be replicated many times. One can

instead keep the relation sorted one way and re-sort whenever

necessary. A small, and certainly insufficient, study of queries

put to a relational system revealed that this means sorting

approximately one-half of the time for binary relations.

It may be necessary to sort the class also. The classes

created during the process, of sentence analysis may not be sorted,

even when the classes in the permanent data base are sorted. In

our image task,. if the input class is assumed sorted then the

output class must be sorted, for it may become the input of another

application of the process. A further complication arises in that

a class may have a subclass structure rather than simply members.

An example is the class of "people" consisting of the two sub-.

classei "male" and "female, " each of which contains individuals.
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Some amount of paging must be done to ensure a simple ordering

on the classes involved.

The sort/merge algorithm will assume that in the data

base all relations are ordered on their domain, and that no classes

are sorted. This last assumption will make our estimates of

paging activity overestimates, but not too much on the average.

Thus, the algorithm is simply stated: (1) sort the class; (2) if

we need the converse relation, sort the relation on its range;

(3) merge the class and relation, producing the image.

The paging behavior of this algorithm can be estimated

analytically for large data bases. Suppose we have a file which

covers n pages and n is large enough so that the file cannot be

contained in main memory. A simple, standard sort/merge

technicine to order that file works as follows: (a) subset the file

into fragments of K pages each (except possibly the last), and

sort each fragment while in main memory; (b) perform the

required number of (K-1) - way merges, until all fragments

have been merged into one, ordered, file. The sort phase will

require 2n page transmissions, as each page is read and written

once. A simple merge algorithm will require ilogic_in 1 -1

merge steps with 2n page transmissions in each. Thus to sort

[an n-page file requires 2n logic_in pages. Assuming that the

relation requires sorting one-half of the time, the total number of

page transmissions is r(1 + lrl ) + c(1 + 2 ilogK_ic1).
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Improvements can be made in this simple sort/meige

which will improve on this formula slightly and these techniques

have been incorporated into the REL sort/merge algorithm. In

obtaining the numbers given in the examples below, we have

used a simulation of the actual technique employed by REL.

Example A: "parents of people"

Both the relation and class are small enough so that

significant savings can be made by working entirely in main

memory. In fact, the absolute minimum is achieved for 25

available page frames.

c = 4
c* = 1000
r = 12
r* = 2000

K SORT

10 44
20 32
30 16
40 I6
50 16

Example B: "prices of stocks"

In this example the relation is so large that the paging

required for its sort dominatei. This is exactly the kind of situa-

tion in which the sort is relatively inefficient.

c = 8
c* = 2000\._.;
r = 596
r* = 100,000
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SORT

10 2674
20 2180
30 1804
40 1804
50 1804

Example C: "salaries of employees"

Another example of files large enough to force a multiple

pass sort, causing three times the minimum number of page

transmissions.

c = 40
c* = 10,000
r = 60
r* = 10,000

K SORT

10 380
20 380
30 380
40 380

_50 380

Example D: "allies of countries"

Even though a rather small amount of data, the relation is

large enough to cause excess paging until K is 50 or larger.

c = 1
c* = 150
r = 23
r* = 3750

K SORT

10 71
20 71
30 48
40 48
50 24
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Method VI: Others. There have been other suggestio:.A for the

implementation of relational structures which should be mentioned,

and then rejected. One of the favorite techniques for searching a

table in main memory is the binary search. If our relational data

structure is ordered, we can use a binary search to find the value

corresponding to any given argument. For any single argument

we would expect to make log2r* comparisons, or at the very least

one page load. .For a class of arguments we must repeat this

process, and can save nothing from the full paging requirements.

Thus a binary search will need c* page loads at least - always

worsc... than the direct access method I.

Another possibility which has been suggested and imple-

mented (Feldman and Rovner 1969) is the use of hash coding the

relational data. This clever implementation places the data for

a given relation on a single, variable length "page" and hash codes

the argument to find its location on that page. If the relation "page"

fits in main memory this technique is fast; on the other hand, a

relation whiCh is larger means essentially c* page accesses

again. (Assuming that the ;relation is p times larger than

available memory and that the hash function distributes uniformly,

the probability that the current needed "page" is already in main
1memory is . Therefore the expected number of page loads is

(1-1/p)c*.)
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Summary of paging behavior. The methods considered

above can be segregated into two categories: those which require

a page load for each individual, and those which can group indivi-

duals. Fixed formats, ring structures, and hash coding are all in

the first category. The number of page loads needed by these

methods is proportional to the number of individuals in the class.

Consequently, if the number of individuals is small these are

extremely efficient; a large size class makes all of them break

down catastrophically.

These methods have other virtues, especially the possibility

of finding the values of several relations for a given individual at

the cost of that same page load. This is the reason why they

are used in the data management systems which produce telephone-

book-like reports. The Fundamental Theorem discussed in

Chapter I implies, however, that we are more informed if we step

back from the absolute lowest level of detail. We need to be able

to produce generalizations of our data.

Abstractions can be generalizations across a set of relations

or across a set of individuals for a given relation. The latter

problem is attacked by the second category of methods. They

structure the data in such a way as to facilitate abstraction over

sets of individuals, in particular collecting all the data concerned

with a relation into physical proximity for efficient access.

Of the methods studied, the two generator algorithms and the

sort/merge, each has its own range where it is the most efficient.
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For very large data bases the sort/merge is superior: its paging

is approximately rlog(r) while the generators page about r 2 (or c 2).

On smaller data bases, or smaller questions on large data bases,

the generator algorithms are more efficient.

A rather nice solution has been implemented in the REL

Data Analysis System, It is a simple matter to keep the values of

r and c in each relation and class respectively. Then every

invocation of the image-producing routine can be locally optimized

by computing the number of page loads required for each algorithm

and selecting the best algorithm for the particular input parameters.

This dynamic minimization of paging has dramatic effects on the

overall processing of a query.

Our four examples show why one should not naively use the

sort/merge algorithm everywhere:

Example A:

c = 4
c* = 1000
r = 12
r* = 2000

"parents of people"

SORT GENR GENC

10 44 20 16
20 32 16 16
30 16 16 16
40 16 16 16
50 16 16 16

Example B: "prices of stocks"

c = 8
c* = 2000
r = 596
r* = 100,000
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K SORT GENR GENC

10 2674 1196 604
20 2180 868 604
30 1804 772 604
40 1804 724 604
50 1304 700 604

Example C: "salaries of employees"

c = 40
c* = 10,000
r = 60
r* = 10,000

K SORT GENR GENC

10 380 380 340
20 380 220 Z20
30 380 180 160
40 300 . 140 . 160
50 300 140 100

Example D: "allies of countries"

c = 1
c* = 150
r = 23
r* = 3750

K SORT GENR GENC

10 71 26 24
20 71 25 24
30 48 24 24
40 . 48 24 24
50 24 24 24

More on paging. A further consideration is whether one can

better optimize by taking a wider context. The succeeding section

discusses the relationship between quantification and paging. Here

we examine the implications of the common situation cf composition

of relations. Our paradigm example will be the phrase "locations

of parents of people. "
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The most straightforward method for hand.,ng this phrase

consists of applying some techm jue to "parents of people" to

obtain the class of parents, then repeat the process independently

for "locations" and that class. Thus the composition of relations

is reflected in the composition of processes for finding the image

of a single relation and class. This method has the advantages of

simplicity and the use of an already needed procedure. The

possibility remains, however, that a specialized routine might be

more efficient. Fortunately, no - the straightforward method is also

the most efficient in this case.

The simple composition method has the disadvantage that a

temporary class must be created, and paged, which holds the output

of the first application of the image procedure. In a procedure de-

signed expressly for the composition case one can hope to eliminate

that temporary class and thereby become more efficient. We can

assume the relational data structure in which the relation consists

of pairs < domain element, range element> . If both relations fit

entirely in main memory one can proceed directly from argument

to "relation of relation of argument" without an intermediate class.

This can be done in our "locations of parents of people" example

by (a) take a person, say Sue; (b) find her first parent, say

Robert; (c) output all locations of Robert; (d) continue searching

for other parents of Sue and repeat from (c) when one is found;

(e) when there are no more parents of Sue, repeat the process

from (a).
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Complications arise when the relations are `oo large to

fit into the available main memory. Ti s could be handled by

viewing the relations as sets of subrelations and the class as a set

.)f subclasses, such that two subrelations and one subclass will

all fit into main memory. One would then need to work through all

combinations of the subrelations and subclasses, taking one piece

from each of the three main sets of data, in order to find the

composition image. Thus if "location" were broken into 2 parts,

"parent" into 3, and "people" into 4, we could have 2. 3.4 = 24

combinations to consider. This means that the number of page

transmissions becomes multiplicative (in the number of relations),

as opposed to additive for the straightforward composition method

We thus have reason to stay with the simple technique.

Quantification

Despite the fact that quantification is basic to our intellectual

endeavors, it has been relatively ignored by the designers of

computer information processing systems. Quantification is one

of our primary tools for abstraction and generalization, and the

Fundamental Theorem implies that we gain information by moving

from the level of detail of our data to the more abstract.

Quantification in English is exemplified by such phrases as:

all boys
at most seven books
which countries
each student
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Note the use of such phrases in abstracting overall characteristics

of classes of objects from details concerning each member of

these classes. Thus, in the sentence "All Harvard students have

at least one girlfriend at Radclilfe,"aproperty cf Harvard students

as a class is derived from data relating individual Harvard students

to individual girls, some of whom attend Radcliff.

The .techniques of quantification will be illustrated by a single

example; "Have the locations of all senators included at least

3 nations?" This in-depth examination provides the concreteness

necessary for an understanding of a complex process. The parse

of this example is below, with unimportant details omitted:

p 7

P4. Ps

Have the locations of all senators included at least 3 nati9ns?

Fig. 11. --Parse of quantification example
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The example will be discussed in terms of its phrase marker,

which is a set of phrases portraying the structure of the sentence

and thus revealing the processing necessary to unravel the meaning

of that sentence. We will use a LISP notation to express these

phrase markers. Each phrase consists of two lists, a phrase list

and a phrase information list. The phrase list - indicated

(POS, F, PI) - contains a part of speech, syntactic features, and

the name of the phrase information list. The features will be

omitted when they do not affect the semantic processing. The

indirection to the phrase information is made to facilitate the

execution of the phrase marker, for the result of a semantic

transformation is a new phrase information list which is then

named by the old phrase element.

Phrase information lists can be e. several types, identified

by the fi- st element:

I. (ROU, C, T) postfix routine: C is a list of the consti-

tuent phrases, and T is the name of a semantic

transformation.

2. (GEN, C, T) prefix routine: (used mainly in generating

situations).

3. (DATA, D) data: D is some data such as a number or

a page in the data base, indicated by °location
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4. (VAR, R, TY) primitive variable: R is a phrase

which is the range of that variable, TY is the type

of quantification.

5. (OUT, STR) output string

The "variable" technique. The "variable" technique for

handling English quantifiers turns each quantified noun phrase into

a "variable, " in the REL sense. This variable then propagatus

upward through the parse during the syntactic processing of the

sentence, and gets bound at the appropriate level of analysis.

The quantified noun phrase qua variable contrasts rather

sharply with arithmetic expression or predicate calculus variables.

These latter variables are truly place markers, conveying only

syntactic information. The type of quantification, such as the

arithmetic sum or product, and the range of values for the variable

are provided when that variable becomes bound. Quantified noun

phrases, on the other hand, acquire such data at the time they

are created. "All senators" is a variable with an "ally type of

quantification and the class of senators for a range.

The arithmetic or predicate calculus variable has an

explicit syntactic marker which indicates the point at which it

becomes bound. Phrases such as "sum f(x) for x=1 to 10" clearly

bind variables, besides specifying the quantification. In English,

however, variables are bound at the clause or sentence boundary,

and there is no explicit binding phrase. In our present example
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the two quantifiers, "all senators" and "at least 3 nations, " are

bound at the sentence boundary Pl. The p-marker below shows that

two generator phrases rare been inserted, corresponding to the

quantifiers. These phrases are the representation of a bound,

quantified, variable.

Fig. 12. --P-marker for "variable" quantifier technique

P1:

Pa:

Pb:

P2:

P3:

(SS, PIO

(VP, PIa)

(VP, PIb)

(VP, PI2)

(IN, PI3)

PI1:

PIa:

PIb:

PI2:

PI3:

(ROU, (Pa), Tss)

(GEN, (Pb), Tall, (P6, ptr), Ra)

(GEN, (F'2), Tat least 3, (P8' ptr), Rb)

(ROU, (P3, P7), Tis)

(ROU, (P4, P5), T.image)
P4: (NP, PI4) PI4: (DATA, alocation)

P5: (NP, PI5) PI5: (VAR, (P6), all)

P6: (NP, Fq6) PI6: (DATA, a senator)
P7: (OJ, PI7) PI7: (VAR, (P8), at least 3)

P8: (NP, 1DI8t
P8:I DATA,(,

Ra: ( (Pb, PIb), (P2, PI2), (P3, PI3), (P5, NP/O) )

Rb: ( (P2, PI2), (P7, 0J/0) )

The p-marker in figure 12 indicates a kernel in which a

copula has an instrumental and an objective case. The instrumen-

tal case is the location of some particular senator; the objective

is some nation. Built around this kernel is the generation and

resolution of the "all senators" and "at least 3 nations" phrases.
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While it is always difficult to describe recursive processes,

the following is a narration of the execution of this phrase marker.

The in tion follows conventional block structure format.

Process Pi:

(1) Process Pa:

(A) generate first (next) senator, say senator i, and
refresh, thus making P5: (NP, PI51)

l (DATA, a .)PI5 senator
(B) process Pb

(1) generate first (next) nation, say nation j, and
refresh, thus P7: (OJ, PI7')

PI7': (DATA, anation j)

(2) process P2

(a) process P3

(i) process P4: recognize it as DATA
and return

(ii) process P5: r DATA

(iii) apply Timage to (P4, P5)

output: P6: (NP, P16')

PIO (DATA, °location of
senator i )

(b) process P7: recognize DATA and return.

(c) apply Tie to (P3, P7)

output: P2: (VP, Piz')

PI2 ' (DATA, yes, if the
location of senator i is
nation j; no, otherwise )
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(3) apply Tat least 3 to P2 of (i, j)

count affirmatives.

if count <3, continue generation on j (i.e. repeat
from step 1)

if count = 3, output PIb': (DATA, yes)

if generation complete, output Pit:: (DATA,
no)

for any output set Pb: (VP , PIb')

(C) apply Tall to Pb of (i)

if affirmative, continue generation on i (repeat
from step A)

if no, output Pia': (DATA, no)

if generation complete, output PIa': (DATA, yes)

for any output, set Pa: (VP , PIa')

(II) apply Tss to (Pa)

output Pi: (SS, PI1')

PI11: (OUT, "yes" or "no")

The essence of the "variable" technique is the generation of

all quantified classes down to individuals, and the application of

the core analysis process to those individuals in the innermost

loop. The core processes operate on individuals only and are not

aware of the quantification around them. This is conceptually

clean, but operationally disastrous.

One of these core processes in the above example is the

image routine, which produces the "location of senatori. " Since

the "variable" technique of quantification invokes the image routine
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for every individual in the range, and each invocation requires at

least one page load regardless of the data structure, this technique

will page proportionately to the number of elements 7.n the range of

the quantifier. The analysis of the previous section has shown,

however, that such paging is unacceptable, and avoidable.

There is another, deeper;lobjection to the "variable"

technique for handling quantifiers which dooms those systems

using the predicate calculus as an intermediate language between

English and the data. The "variable" technique, and the language

of the predicate calculus, requires that all quantifiers be properly

nested. In our example the computation of the "location of

'senator.' is within the quantification over nations, and normally

would be repeated as many times as there are nations.

Fortunately the REL refresher mechanism provides a "do-loop"

optimization which guarantees that no redundant processing will

occur. In this case the refresher stack associated with the

nation quantification does not contain P3 ("location of senatori")

so that P3 is processed only once for each senator.,

The multiplicative effect can be seen in another example:

"Which boys are friends of at most 3 girls?" The phrase marker

associate dwith this query is shown in figure 13. Here "boys" are

quantified as the outer variable, "girls" are the inner variable,

and the central process is the test, "is boyi equal to a friend of

girl ?"
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Fig. 13. --P-marker for second "variable" quantifier example.

PI:

Pa:

Pb:

(SS, PI1)

(VP, PIa)

(VP, PIb)

PI
1:

PIa:

PIb:

(ROU, (P ), T )a ss
(GEN, (Pb), Twhich, (P4, ptr), Ra)

(GEN, (P2), Tat most 3, (P8, ptr), Rb)

P2: (VP, PI2) PI2: (ROU, (P3, P5), Tis)

P3: (AG, P13) PI3: (VAR, (P4), which)

P4: (NP, PI4) PI4: (DATA,
4rboy)

P5: (OJ, PI5) PI5: (ROU, (P6, P7), Timage)

P6: (NP, PIb) PIb: (DATA, afriend)

P7: (NP, PI7) (VAR, (P8), at most 3)

P8: (NP, PI8) PI8: (DATA, *girl)
Ra: ( (P6, PI6), (P2, PI2), (P3, AG/0 )

Rb: ( (P2, PI2), (P5, PI5), (P7, NP/0) )

girl,The fact that the innermost quantified variable, is

involved in a computation which is independent of the outermost

quantifier means that this computation will be repeated many times

unnecessarily. In this case there is no solution: "do-loop"

optimization is irrelevant and does not help, and the quantifiers

cannot be interchanged. The unaware system which uses the

"variable" quantification technique can be devastated by this

multiplicatively excessive, useless computation.
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The "label class" technique. The REL data analysis system

uses a method for handling quantifiers which circumvents the prob-

lems discussed above. This method turns a phrase such as "all

senators" into a class which is marked with the type of quantification,

and in which each element is associated with the identification of a

quantifier range element. The label, as the identification is called,

represents the instance of the quantified variable which led to the

present element. Thus the phrase "locations of all senators" is

represented by a class consisting of the pairs <New York, Jones >

< Boston, Smith >, and so on, meaning that a location of Senator

Jones was New York, etc. Notationally this class will be written

a < 0, all >
< location, senator > The subscripts are the class elements;

the superscripts identify the type of quantifier (with 0 indicating

none). The "label class" technique shifts the burden from the

syntactic analysis of variables to the semantic analysis of labels.

Re-considering our example "Have the locations of all senators

included at least 3 nations?", we now have the simplified phrase

marker below.

Fig. 14-7P-marker for "label class" quantifier technique

13
1:

(SS, PI1) PI1: (ROU, (P2), Tss)

P2: (VP, PI2) PIZ: (ROU, (P3, P7), Tis)

P3: (IN, PI3) PI3: (ROU, (P4, P5), Timage)

1)4: (NP, PI4) PI4: (DATA, alocation)
P5: (NP, PI5) PI5: (ROU, (P6), Tall)
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P6'
P7:

P8'

(NP, PI )
6

(OJ, PI7)

(NP, PI
8)

PI6:

P17:

PI
8:

(DATA, asenator)
(ROU, Tatat least 3)

(DATA, anation)

The importance of the "label class" techniqUe for handling

English quantifiers lies in the properties of its semantic processing.

We first describe the processing of this exampleand then discuss

it. Process P1:

(I) Process P2:

(A) Process P3:

(I) Process P4: recognize it as DATA and
return

Process P5:

(a) Process P6: recognize as DATA,
and return.

(b) apply Tan to (P6)

output P5: (NP, P16')

(2)

(3)

'
all

6 senator
apply Timage to (P4, P5)

output P3: (NP, PI31)

)

<0, all >P131: (DATA, a < location, senator >
(B) Process P7:

(1) Process P8: recognize DATA and return

(2) apply Tat least 3 to (P8)

output P7: (NP, P17')
at least 3

'PI
7
': (DATA, a )nation
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(C) apply Tis to (P3, VT).

output P2: (VP, PI2') PI2: (DATA, yes/no)

(II) Tss to (P2)

output P1: (SS, PI1') PI1': (DATA, "yes"/"no'')

The essence of the "label class" technique is that processes

operate on quantified classes as a group, rather than individually.

Thus in step I. A. 3 we apply the image routine to "location" and

"all senators" and can utilize the paging optimization discussed

in the previous section. This reduction of paging during quantifica-

tion represents an extremely important breakthrough, for it shifts

the economic balance toward the use of abstraction. Since abstrac-

tion has been so neglected in recent computer systems, any such

shift has a large payoff in informativeness.

The other problem attached to the "variable" technique,

that of redundant computation, is also solved by the "label class"

method. Every phrase is computed once only and the quantifiers

essentially work their way upward through the phrase marker.

Quantifiers interact when two labelled classes are merged, as in
<0 all > a <at least 3 >andstep I. C for a In these<loc. , senator > < nation >

situations the quantifiers are ordered, consolidated, and sometimes

resolved. To explain this process we will use several new

examples.



Figures V-2a through f: Monthly summary plots used to select quiet
periods in 1969 and 1970. For the indicated month the following
information, starting at the top, is plotted vs. time:

1) The average polar D1D8 counting rate in cts/sec (labelled DI) is
plotted logarithmically. This rate is nearly insensitive to
electrons but responds to nuclei from -.4.2 to 20 MeV/nucleon.

2) The average polar D2D8 counting rate in cts/sec (labelled D2) is
plotted logarithmically. This rate responds to electrons
> 200 keV and to nuclei > 3 MeV/nucleon.

3) The average polar D1D2D8 counting rate in cts/sec (labelled D1D2)
is plotted logarithmically. This rate responds to nuclei from
3 to --20 MeV/nucleon.

4) The average polar D2D3D8 counting rate in cts/sec (labelled D2D3)
is plotted logarithmically. This rate responds to electrons
> 1 MeV and nuclei > 19 MeV/nucleon.

5) The > 10 MeV solar proton fluxes measured by the Solar Proton
Monitoring Experiment aboard Explorer 41. This cosmic ray telescope
which is described briefly in the ESSA descriptive text , also
has some electron sensitivity. The large rate excursions repeated
at "4.3 day intervals are due to the periodic passage of the
satellite through the earth's radiation belts. These excursions have
been largely suppressed by the plotting program.

6) Normalized hourly average counting rates for 2 neutron monitors:
Alert (upper line) and Deep River.

7) The standardized K-index of geomagnetic activity from twelve
observations are averaged to obtain Kp. The quasi-logarithmic Kp
scale ranges from 0 (quiet) to 9 (very disturbed). The legend
for the plots is identical to that adopted by ESSA.

8) Geomagnetic storm sudden commencements (labelled SC) are indicated
by solid triangles if confirmed and by open triangles if unconfirmed.

9) Magnetogram sudden impulses (labelled SI) are indicated by solid
diamonds if confirmed and open diamonds if unconfirmed.

10) Optical solar flares (labelled SOLAR FLARE) of importance greater than
2F observed by the world-wide system of solar observatories are
indicated by a small vertical line plotted at the beginning time of
the flare. The importance (2N, 3B, etc.) is included. Periods of no
flate patrol are indicated by horizontal lines of appropriate length.

0
11) 2 - 12A solar x-ray flares (labelled X RAY) with a peak flux at least

4 times the ambient value are indicated by .a vertical line. These
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Surface structure ordering of quantifiers. Our first

examples concern quantifiers which are similar, possibly identical,

and the determination of their order of nesting. We shall consider

the following two examples: (a) All people play some sport; and

(b) Some sport is played by all people.

The latter sentence is clearly the passive form of the former,

and yet differs in an important manner from the normal passive

transformation. Consider "John plays baseball" and "Baseball

is played by John. " These sentences, while different in surface

structure, are identical in deep structure and in meaning.

Linguists have been careful to note this retention of meaning

through the passive transformation. The meanings of our two

examples differ, though it is the same passive transformation, in

a way reflecting a different ordering of the quantifiers. "All

people play some sport" means that each person plays something,

and that sport may be different for different people. For this

sentence to be true it is enough that each individual play any sport.

On the other hand, "some sport is played by all people"

means that there is a single sport, which everyone plays. This

requirement that everyone play the same sport is not implicit in

the active form of the sentence. The difference in meaning is

exactly in the nesting of the quantifiers: the active form places

the "all" quantifier outermost followed by the "some" quantifier,

the passive has the "some" followed by the "all." Since the deep
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structures are identical, the difference in meaning must be a

function of the differing surface structures. If we include the

feature marking the surface structure subject, our examples have

the following phrase markers:

a) P0: (VP, - P10) PIG: (ROU, (P1, P2), T play)
allP

1: (AG, sur. subj., PI1) P/1. (DATA, " people
P2: (OJ, PI

2)
PI2: (DATA, some

sport
b) P0: (VP, ,PI0) PI0: (ROU, (P1, P2), T play)

P1: (AG, -. ,PI1) PI1: (DATA, People

P2: (OJ, sur. subj., PI2) PI
2

(DATA, some
sport

Using the simple rule that surface object quantifiers should

be nested within surface subject quantifiers, our examples concep-

tually consolidate the quantifiers into these classes:

a) a < some, all >
< sport, people >

b) a < all, some >
< people, sport >

The quantifiers can then be resolved, innermost first, and

in both cases produce the correct interpretation. Another example

of this same effect of surface structure is in "when did each

person live in each city?" Here one wants as output a list of

people and, for each, a list of cities and times. Although ignored

so far, all data has a time span associated with it in the REL data

analysis system. This adds tremendous complexity to the processing

routines, yet is absolutely essential to a useful system. In this ex-

ample, we indicate only a simplified version of the processing.
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0, each, eachatime, city, person

aeach, each
city, person

°teach each
person city

I I I -I

a a0 O.
11.?,

When did each person live in each city?

Fig. 15. --Parse and label class processing for (each, each)
example.

The precedence ordering of quantifiers. The rule that

surface object quantifiers are nested within surface subject

quantifiers works if the quantifiers are similar. There is a

hierarchical ordering, hoviever, which supersedes this rule. We

can classify as similar all quantifiers such as some, at least n, at

most n, exactly n, all, all but n, etc. These quantifiers are the

ones which should be nested within any of the other types. The

next group are the ones which count: how many, what proportion of,

and what percentage of. These quantifiers should be kept outside

the first group, and nested within the last group of quantifiers.
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These produce labels to be output as tabular listings: each, which,

and what,

One can see the effect of this ordering in the example, "At

most 3 people have lived in which cities?" The "which" quantifier,

even though it is the surface object, must be treated as the outer-

most to produce the class a at most 3, which >
< people, cities > . The answer to

this question is a list of cities, since the "at most 3" quantifier is

resolved at the clause boundary.

Thus we have a precedence ordering of the quantifiers

which partially determines the order of nesting in a multiply-

quantified class. The nesting order in turn determines the inter-

pretation of a phrase and finally of the entire sentence. The com-

plete rule for nesting can now be stated: when two quantified

phrases are to be merged, the quantifiers are to be nested first

by the precedence order and within each precedence group by the

left-to-right order of appearance within the sentence, that is,

quantifiers on the right are to be nested within quantifiers on the

left.

Resolution of quantifiers. Mentioned above was the resolu-

tion of a quantifier, that is, the point at which the quantifier

disappears and is replaced by a sirple, non-quantified set.

Quantifiers are resolved by processes which depend on the quantifier

type and at points in the phrase marker which depend on the

precedence order.



-112-

The all, some, at least n quantifiers resolve into booleans

by processes corresponding to either universal or existential

logical quantification. The how many quantifiers resolve into

numbers by a counting operation, and the each or which quantifiers

resolve into character strings placed on the output.

The lowest precedence level quantifiers, all, some, etc.,

are resolved at the clause boundary. This occurs when a verb

phrase gets parsed into a non-verb phrase, such as sentence,

noun, or time. All other quantifiers are resolved only at the

sentence level. This difference is important because of the

possibility of subordinate clauses. The all or some quantifiers

are eliminated at the subordinate clause boundary: "people who

live in some city" represents a non-quantified class of people.

The last sentence of this section illustrates many of the

properties of quantifiers and their interaction. Figure 16 is a

representation of its parse and label class processing and hints at

an exciting development for the future: the.abel type "pn" used

for a generalized anaphoric expression. "How many employees

of each company are children of people who have worked for some

competitor of that company?"
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Use of the REL Data Analysis System

The difficulty of articulating the impact of a responsive,

flexible data analysis system must be apparent, and the non-

computer scientist reading this will probably have found the inside,

technical viewpoint almost incomprehensible. This section will

present the system from the other side of the language: the

user's view.

As a typical, small-to-medium size data base we will use

the demographic. data compiled by Professor Bruce Russett of

Yale University (1969). It consists of 75 political, social, and

economic indicators on each of 133 countries. The total number

of datums i3 therefore approximately 10,000. Some of these

indicators are population, GNP, public expenditures, military

personnel, newspaper circulation, unemployment, life expectancy,

and capital formation. No time series are involved since the

data is assumed to have been gathered at one poi in Lime,

essentially 1959.

The REL user first declares the lexicon - the names of

items relevant to this particular data:

United States: = name
Canada: = name
U. S. S. R.: = name
population: = number relation
GNP: = number relation

There would be one such declaration for each country and each
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indicator. Using the language extension mechanism, we might

also provith synonyms:

def: Rus sia: U. S. S. R.

Now we can input the basic data, either in the form of English

declarative sentences or directly from a fixed-format card

image:

The population of the United States is 183742.
The GNP of the United States is 443270.
The United States' life expectancy is 73.

We will not be concerned with the unit3 in which each indicator

is expressed; clearly this can be handled in a variety of ways.

At this point it is possible to ask simple, fact-retrieval questions

which involve few details:

What is the working age population. of Mali?
What is the agricultural land area of the United States /

the agricultural land area of Russia?

This mode of analysis quickly becomes unsatisfactory, especially

if the amount of data is large. One needs to generalize and

summarize across wide areas through the data, and yet be able

to check details when desired, in order to cross-check or

verify some generalization in the small. The simple summari-

zations are first, needing only some grouping of the data:

country: = class
def: nation: country
The United States is a country.
Canada is a country.

What is the total population of all countries?
How many nations have a negative GNP increment?
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The language extension mechanism proves useful very early, for

it allows concepts to take on a life of their own:

def: per capita "land area": "land area"/population

Two clarifications about this definition: (1) "land area" is a

variable for all things with the same part of speech as land area,

i.e. number-valued relation, thus the definition is a general one

for per capita anything; and (2) this definition is totally bound

to the context of our present, particular data base. Clearly

this is not a generalized definition of per capita - it is only

meaningful if w know that a "population" number relation exists.

We re-emphasize that REL English is a formal language - not

full, unrestricted everyday English. Yet it is a formal language

which can be tailored to a subject matter so that the terms used

are meaningful and unambiguous. It is the idiosyncratic nature

of the above definition of per capita which makes it extremely

useable in our present context, and not at all useable in general:

What is the percapita defense expenditure of each nation?
United States .23
United Kingdom .08
Canada .08
West Germany .04

A representative sample of the answer to this question has been

included to show that the phrase "each nation" is a request for a

table of outputs and is a quantifier situation. This is a common

means of summary, but the usual method is by the use of

descriptive statistics:
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What is the average school enrollment?
What is the median of communist vote / total vote of all

nations?
What is the correlation between communist vote / total

vote and per capita GNP over nations?
Which nations' per capita religious vote is greater than

2* the median per capita religious vote?

One component which determines whether such questions as the

last one above will really be asked is the time involved in

producing their answers (and therefore also the cost). We can

easily estimate the amount of elapsed time it will take the REL

system to answer this query. There will be some overhead in ini-

tializing the system, parsing the sentence, and so on, but this

will be under a second. In terms of the data, the REL data

analysis system uses a page size large enough so that the class

of countries, the population data, and the religious vote data

will each fit on a single page. Thus to get the "per capita religious

vote of nations" data will require only 3 page loads, since the

other manipulations will be done in main memory. If we triple

this for good measure, we still have an elapsed time of 1/2

second. The entire query, even with finding the country names

to be printed, will take 1 to 2 seconds.

As we have stressed, however, simple statistics is not

all of data analysis. Another important part of the process of

imposing our conceptual structure on the data consist of subsetting

the data into interesting groupings, each of which is to be studied

further.
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The most common type of international grouping is by

geographical region. Geographers find that local proximity has

important influences on the development of a nation:

region: = relation
locate: = verb (region of IN is LO)
Europe: = name
France is located in Europe.

What is the average per capita GNP of European nations?
What is the correlation between communist vote and

religious vote over countries located in each region?

The geographic breakdown of homogeneity is not the only

possible or desirable one. The compilers of the Yale data base

considered the matter (Russett 1964, p. 322):

When we describe Peru as a Latin American
country, we arefirMTF) y locating it in a particular
geographic region. If, however, we attempt to explain
certain things about Peru, such as its personalismo
in politics or its low per capita income, by saying that
it is a Latin American country, several interpretations
of this remark are possible. The simplest, which we
shall call the geographic interpretation of regionalism,
is that being a Latin American nation means having a
lower per capita income than, say, North American
countries, or means having considerable ersonalismo
in its politics. If [ our preceeding analysis a been
presented separately for each of the worTEKs,major regions
this kind of geographic analysis of the broadest
ecological sort, comparing different regions with
respect to their typically different social and political
characteristics, would have been facilitated.

Another way of interpreting the regional clustering
of national data for cross-national comparisons
would be to make explanations in terms of generalized
cultural, political, or social variables which correlate
with regional groupings. Thus, instead of talking
about East European states, one can refer to communist
countries and mean nearly the same thing. At some
stage Mainland China and Castro's Cuba would also
merit such a label. Even more generally, as this
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Handbook has done, one might describe such states
in terms of a very high percentage of the electorate
voting for communist political parties. Again it is
cleal,.,-that European nations (and a smaller number
of Asian states, some of which do not have elections)
are the particularly involved. Although highly concentrated
in Europe and North America, economic development
is another important generalizable regional phenomenon.

Describing nations in terms of such universalistic
variables might be called 'sociological regionalism.

As a research focus and a political fact regionalism
may mean more than a clustering of geographically
proximate states on Handbook profiles, and more than
the description or exp anation of regional political
and social phenomena in terms of sociological
variables. A good deal of the literature of social science
suggests that relationships between variables will be
different for data from different geographic or cultural
contexts.

What is the average GNP increment of nations whose
executive stability index is greater than 100?

What proportion of European nations whose per capita
land area is less than .5 have an infant mortality
rate greater than 100?

The essence of this rather lengthy passage is not that the

REL Data Analysis System can handle regionalism, either

geographic or sociological, but that it facilitates the imposition

of structure on the data by the researcher. One can express and

analyze that view which is relevant--and if that particular

structure ceases to be relevant, one can impose a new one. One

is neither forced to use pre-existing structure nor limited to

one's own obsolete conceptualization.
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developed: = class
All nations whose per capita GNP is greater than 1 are

developed.
underdeveloped: = class
All nations whose per capita GNP is less than .25 are

underdeveloped.
What is the average per capita public expenditure of

developed nations?
Is the life expectancy of.at least 3 European nations

less than the maximum life expectancy of under-
developed nations?

def.: "GNP" ratio of "developed" to "underdeveloped":
median "GNP" of "developed"/median "GNP" of
"underdeveloped"

What is the foreign trade ratio of developed nations to
all nations?

What is the life expectancy ratio of underdeveloped
European nations to African nations?

The grouping of entities into classes, the use of relations

between entities, and the use of language extensions are all

powerful conceptual tools by which we can impose structure on

our data. The grouping of the United States, France, West

Germany, and so on, into developed nations is a process of

abstraction--the emphasizing of certain similarities and-the

exclusion of differences. At the same time the class of

nations has been broken into three classes--developed and

underdeveloped nations, and neither--a process of ramification

of the structure of the data base in order .to obtain a more finely

detailed picture. The same effects are seen in the use of the

relation "region" which allows phrases such as "European

nation". The relational structure has the added advantage that
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it handles phrases like "nations located in each region" thus

allowing us to quantify over the subsets.

The language extension mechanism, though often

underrated, is just as important. Language extensions give

substance to concepts and push our own notion of relevance into

the language. The definition of "percapita" above singles out

population as being important, and the ratio of something to

population as meaningful. Definitions are not mere abbreviations

- they introduce new possibilities into our universe of discourse

and thus change the informativeness of our language. Since

the phrases which are defined can be re-defined with a

different meaning, or even a primitive one, they are essentially

independent of the original definition. Once defined, we utilize a

concept without going into its definition, as if it were a prim-

itive entity - which it therefore becomes. Definitions are

articulations of theory.

This example, and data base, has thus far barely touched

the potential inherent in a relational data system: the explicit

use of relations between entities. Even though most of our

conceptualizations are concerned with the relationships existing

between one thing and another, our data and current theory

reflect the inability of historical data systems to manipulate

interconnected models. The relational data systems are the

beginnings of tools for studying interdependencies of a stronger-

than-statistical nature. Since the Yale data does not contain
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any explicit relations, we shall add one for explanatory purposes:

ally; = relation
West Germany, the United Kingdom, and Japan are allies

of the United States

What is the median GNP of allies of the United States?
What is the total population of the United States' allies/

the total population of Russia's allies?

The above use of the relation is again to subset the data - to cut

the universe along desired lines.' One can also study the relation

itself:

Are all allies of allies of the U.S. allies of the U. S. ?
How many nations are allies of both the United States

and Russia ?
What proportion the U. S. 's allies are developed?

The net of relational structure can become exceedingly complex

and begin to reflect some of the realities of the situation.

Clearly we cannot do justice to the power of the relational

structure - we can only give the briefest glimpse into the

complex process of analysis:

trading partner: = relation

What trading partners of each nation are not allie s of
that nation?

Which trading partners of China trade with some nation
that trades with both Russia and the United States?

What proportion of the underdeveloped trading partners of
European nations trade with at most 2 communist
nations?
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